Python X轴中的烛台图表似乎塞满了

时间:2018-10-31 23:19:24

标签: python matplotlib candlestick-chart

我正在从以下网站运行代码:

https://ntguardian.wordpress.com/2018/07/17/stock-data-analysis-python-v2/

生成蜡烛图。我在Spyder中运行过类似的代码,而我对该代码所做的唯一修改是

import numpy as np
from matplotlib.dates import DateFormatter, WeekdayLocator,DayLocator,MONDAY
from mpl_finance import candlestick_ohlc
from matplotlib.dates import date2num

他们的图表在网页上看起来像这样: Their chart looks like this on the webpage

这是我在Spyder中运行时的图表 This is my chart when I run it in Spyder

我似乎无法理解为什么当我没有更改代码时为什么会看到如此明显的差异。

Spyder中是否存在一些导致这个问题的怪癖?还是我需要多几行代码?

请帮助我,因为我是matplotlib的新手。

非常感谢,非常感谢您的帮助。

我的总体代码

 import pandas as pd
 import numpy as np

 pd.set_option('display.max_rows', 500)
 pd.set_option('display.max_columns', 500)
 pd.set_option('display.width', 1000)



 import quandl
 import datetime

 # We will look at stock prices over the past year, starting at January 

 start = datetime.datetime(2016,1,1)
 end =datetime.date.today()

 #Fist define the security for which you are extracting the Series
 s = "AAPL"
 apple = quandl.get("WIKI/" + s, start_date=start, end_date=end)

 print (type(apple))

 print (apple.head())

 #print (apple.tail())

 import matplotlib
 import matplotlib.pyplot as plt
 import pylab

 #Lines of Code for Jupyter
 # This line is necessary for the plot to appear in a Jupyter notebook
 #%matplotlib inline
 # Control the default size of figures in this Jupyter notebook
 #%pylab inline


 pylab.rcParams['figure.figsize'] = (15, 9)  # Change the size of plots

 print (apple["Adj. Close"].plot(grid = True))

 from matplotlib.dates import DateFormatter, WeekdayLocator, DayLocator, 
 MONDAY
 from mpl_finance import candlestick_ohlc
 from matplotlib.dates import date2num


 def pandas_candlestick_ohlc(dat, stick = "day", adj = False, otherseries = 
     None):
"""
:param dat: pandas DataFrame object with datetime64 index, and float columns 
"Open", "High", "Low", and "Close", likely created via DataReader from 
"yahoo"
:param stick: A string or number indicating the period of time covered by a 
single candlestick. Valid string inputs include "day", "week", "month", and 
"year", ("day" default), and any numeric input indicates the number of 
 trading days included in a period
:param adj: A boolean indicating whether to use adjusted prices
:param otherseries: An iterable that will be coerced into a list, containing 
the columns of dat that hold other series to be plotted as lines

This will show a Japanese candlestick plot for stock data stored in dat, 
also plotting other series if passed.
"""
mondays = WeekdayLocator(MONDAY)        # major ticks on the mondays
alldays = DayLocator()              # minor ticks on the days
dayFormatter = DateFormatter('%d')      # e.g., 12

# Create a new DataFrame which includes OHLC data for each period specified 
by stick input
fields = ["Open", "High", "Low", "Close"]
if adj:
    fields = ["Adj. " + s for s in fields]
transdat = dat.loc[:,fields]
transdat.columns = pd.Index(["Open", "High", "Low", "Close"])
if (type(stick) == str):
    if stick == "day":
        plotdat = transdat
        stick = 1 # Used for plotting
    elif stick in ["week", "month", "year"]:
        if stick == "week":
            transdat["week"] = pd.to_datetime(transdat.index).map(lambda x: 
    x.isocalendar()[1]) # Identify weeks
        elif stick == "month":
            transdat["month"] = pd.to_datetime(transdat.index).map(lambda x: 
    x.month) # Identify months
        transdat["year"] = pd.to_datetime(transdat.index).map(lambda x: 
    x.isocalendar()[0]) # Identify years
        grouped = transdat.groupby(list(set(["year",stick]))) # Group by 
    year and other appropriate variable
        plotdat = pd.DataFrame({"Open": [], "High": [], "Low": [], "Close": 
    []}) # Create empty data frame containing what will be plotted
        for name, group in grouped:
            plotdat = plotdat.append(pd.DataFrame({"Open": group.iloc[0,0],
                                        "High": max(group.High),
                                        "Low": min(group.Low),
                                        "Close": group.iloc[-1,3]},
                                       index = [group.index[0]]))
        if stick == "week": stick = 5
        elif stick == "month": stick = 30
        elif stick == "year": stick = 365

  elif (type(stick) == int and stick >= 1):
    transdat["stick"] = [np.floor(i / stick) for i in 
  range(len(transdat.index))]
    grouped = transdat.groupby("stick")
    plotdat = pd.DataFrame({"Open": [], "High": [], "Low": [], "Close": []}) 
# Create empty data frame containing what will be plotted
    for name, group in grouped:
        plotdat = plotdat.append(pd.DataFrame({"Open": group.iloc[0,0],
                                    "High": max(group.High),
                                    "Low": min(group.Low),
                                    "Close": group.iloc[-1,3]},
                                   index = [group.index[0]]))

else:
    raise ValueError('Valid inputs to argument "stick" include the strings "day", "week", "month", "year", or a positive integer')


# Set plot parameters, including the axis object ax used for plotting
fig, ax = plt.subplots()
fig.subplots_adjust(bottom=0.2)
if plotdat.index[-1] - plotdat.index[0] < pd.Timedelta('730 days'):
    weekFormatter = DateFormatter('%b %d')  # e.g., Jan 12
    ax.xaxis.set_major_locator(mondays)
    ax.xaxis.set_minor_locator(alldays)
else:
    weekFormatter = DateFormatter('%b %d, %Y')
ax.xaxis.set_major_formatter(weekFormatter)

ax.grid(True)

# Create the candelstick chart
candlestick_ohlc(ax, list(zip(list(date2num(plotdat.index.tolist())), 
plotdat["Open"].tolist(), plotdat["High"].tolist(),
                  plotdat["Low"].tolist(), plotdat["Close"].tolist())),
                  colorup = "black", colordown = "red", width = stick * .4)

# Plot other series (such as moving averages) as lines
if otherseries != None:
    if type(otherseries) != list:
        otherseries = [otherseries]
    dat.loc[:,otherseries].plot(ax = ax, lw = 1.3, grid = True)

ax.xaxis_date()
ax.autoscale_view()
plt.setp(plt.gca().get_xticklabels(), rotation=45, 
horizontalalignment='right')

plt.show()

pandas_candlestick_ohlc(apple, adj=True, stick="month")

1 个答案:

答案 0 :(得分:0)

我似乎不明白这一点,但是在重新复制代码并关闭Spyder并重新启动后,它现在似乎可以工作了。感谢@ImportanceOfBeingEarnest和@DavidG为我提供的帮助。