我正在尝试在“ handleFile()”函数之外使用“ workbook”变量。我知道我无法返回工作簿变量,因为它是一个异步函数,我尝试使用promises,但我不知道如何正确执行。请问你能帮帮我吗!请记住,我是新手,谢谢!
var rABS = true; // true: readAsBinaryString ; false: readAsArrayBuffer
function handleFile(e) {
var files = e.target.files, f = files[0];
var reader = new FileReader();
reader.onload = function(e) {
var data = e.target.result;
if(!rABS) data = new Uint8Array(data);
var workbook = XLSX.read(data, {type: rABS ? 'binary' : 'array'});
/* DO SOMETHING WITH workbook HERE */
};
if(rABS) reader.readAsBinaryString(f); else reader.readAsArrayBuffer(f);
}
input_dom_element.addEventListener('change', handleFile, false);
答案 0 :(得分:0)
如果您要使用诺言,您将得到以下内容:
function handleFile(e) {
new Promise(function(resolve, reject) {
var files = e.target.files, f = files[0];
var reader = new FileReader();
reader.onload = function(e) {
var data = e.target.result;
if(!rABS) data = new Uint8Array(data);
var workbook = XLSX.read(data, {type: rABS ? 'binary' : 'array'});
/* DO SOMETHING WITH workbook HERE */
};
if(rABS) {
resolve(reader.readAsBinaryString(f));
} else {
resolve(reader.readAsArrayBuffer(f));
}
});
}
promise(我将如何做)的另一个例子:
function handleFile(e) {
processFile(e).then((res) => {
// do something with reader
});
}
function processFile(e) {
return new Promise(function(resolve, reject) {
var files = e.target.files, f = files[0];
var reader = new FileReader();
reader.onload = function(e) {
var data = e.target.result;
if(!rABS) data = new Uint8Array(data);
var workbook = XLSX.read(data, {type: rABS ? 'binary' : 'array'});
/* DO SOMETHING WITH workbook HERE */
};
resolve(reader);
});
}
input_dom_element.addEventListener('change', handleFile, false);
希望这会有所帮助!
答案 1 :(得分:0)
workbook
变量是私有的,因此在处理该变量时它是安全的。
但是要回答您的问题,假设您想在全局范围内访问它。
替换以下行:
var workbook = XLSX.read(data, {type: rABS ? 'binary' : 'array'});
使用
workbook = XLSX.read(data, {type: rABS ? 'binary' : 'array'});
这样,您可以使用workbook
在全局范围内访问工作簿,也可以使用window.workbook
在任何范围内访问工作簿(假定window
变量引用了全局window
对象)
答案 2 :(得分:-1)
如果要在函数外部使用变量,请在函数外部声明它。确保已声明该变量,或在函数调用期间对其进行了初始化:
"""
Usage:
# From tensorflow/models/
# Create train data:
python generate_tfrecord.py --csv_input=data/train_labels.csv --output_path=train.record
# Create test data:
python generate_tfrecord.py --csv_input=data/test_labels.csv --output_path=test.record
"""
from __future__ import division
from __future__ import print_function
from __future__ import absolute_import
import os
import io
import pandas as pd
import tensorflow as tf
from PIL import Image
from object_detection.utils import dataset_util
from collections import namedtuple, OrderedDict
flags = tf.app.flags
flags.DEFINE_string('csv_input', '', 'Path to the CSV input')
flags.DEFINE_string('output_path', '', 'Path to output TFRecord')
FLAGS = flags.FLAGS
# TO-DO replace this with label map
def class_text_to_int(row_label):
if row_label == 'Field':
return 1
else:
None
def split(df, group):
data = namedtuple('data', ['filename', 'object'])
gb = df.groupby(group)
return [data(filename, gb.get_group(x)) for filename, x in zip(gb.groups.keys(), gb.groups)]
def create_tf_example(group, path):
with tf.gfile.GFile(os.path.join(path, '{}'.format(group.filename)), 'rb') as fid:
encoded_jpg = fid.read()
encoded_jpg_io = io.BytesIO(encoded_jpg)
image = Image.open(encoded_jpg_io)
width, height = image.size
filename = group.filename.encode('utf8')
image_format = b'jpg'
xmins = []
xmaxs = []
ymins = []
ymaxs = []
classes_text = []
classes = []
for index, row in group.object.iterrows():
xmins.append(row['xmin'] / width)
xmaxs.append(row['xmax'] / width)
ymins.append(row['ymin'] / height)
ymaxs.append(row['ymax'] / height)
classes_text.append(row['class'].encode('utf8'))
classes.append(class_text_to_int(row['class']))
tf_example = tf.train.Example(features=tf.train.Features(feature={
'image/height': dataset_util.int64_feature(height),
'image/width': dataset_util.int64_feature(width),
'image/filename': dataset_util.bytes_feature(filename),
'image/source_id': dataset_util.bytes_feature(filename),
'image/encoded': dataset_util.bytes_feature(encoded_jpg),
'image/format': dataset_util.bytes_feature(image_format),
'image/object/bbox/xmin': dataset_util.float_list_feature(xmins),
'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs),
'image/object/bbox/ymin': dataset_util.float_list_feature(ymins),
'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs),
'image/object/class/text': dataset_util.bytes_list_feature(classes_text),
'image/object/class/label': dataset_util.int64_list_feature(classes),
}))
return tf_example
def main(_):
writer = tf.python_io.TFRecordWriter(FLAGS.output_path)
path = os.path.join(os.getcwd(), 'Images')
examples = pd.read_csv(FLAGS.csv_input)
grouped = split(examples, 'filename')
for group in grouped:
tf_example = create_tf_example(group, path)
writer.write(tf_example.SerializeToString())
writer.close()
output_path = os.path.join(os.getcwd(), FLAGS.output_path)
print('Successfully created the TFRecords: {}'.format(output_path))
if __name__ == '__main__':
tf.app.run()
但是,对于您的情况,我建议使用classes,这将使您以更加逻辑和易于维护的方式链接变量和函数。您的代码可以这样重写:
var x;
function foo() { x=5; }
function bar() { x+=10; }
foo();
bar();
console.log(x); // 15