R中的复杂数据框计算

时间:2018-10-31 19:30:43

标签: r dplyr data-manipulation

我目前正在导入两个表(以最基本的形式)

Table 1
State Month Account           Value
NY    Jan   Expected Sales    1.04
NY    Jan   Expected Expenses 1.02

Table 2
State Month Account    Value
NY    Jan   Sales      1,000
NY    Jan   Customers  500
NY    Jan   F Expenses 1,000
NY    Jan   V Expenses 100

我的最终目标是创建一个包含前两行值的第3个数据框,并根据函数计算出第4列

NextYearExpenses = (t2 F Expenses + t2 V Expenses)* t1 Expected Expenses
NextYearSales = (t2 sales) * t1 Expected Sales

所以我想要的输出如下

State Month New Account Value
NY    Jan   Sales       1,040
NY    Jan   Expenses    1,122

我对R比较陌生,我认为ifelse语句可能是我最好的选择。我尝试合并表并使用简单的列函数进行计算,但没有实际进展。

有什么建议吗?

3 个答案:

答案 0 :(得分:2)

您可能需要处理一些数据,但没有异常

require(dplyr)
Table1<-tibble(State=c("NY","NY"), Month=c("Jan","Jan"), Account=c("Expected Sales", "Expected Expenses"), Value=c(1.04,1.02))

Table2<-tibble(State=c("NY","NY","NY","NY"), Month=c("Jan","Jan","Jan","Jan"), Account=c("Sales", "Customers", "F Expenses","V Expenses"), Value=c(1000,500,1000,100))

我要做的第一件事是将帐户重命名为通用名称,即费用,这将有助于我稍后合并到表1

Table2$Account[Table2$Account=="F Expenses"]<-"Expenses"
Table2$Account[Table2$Account=="V Expenses"]<-"Expenses"

然后我使用group_by函数并按州,月份和帐户分组并进行总和

Table2 <- Table2 %>% group_by(State, Month,Account) %>% 
summarise(Tot_Value=sum(Value)) %>% ungroup()
head(Table2)

## State Month Account   Tot_Value
##  <chr> <chr> <chr>         <dbl>
## 1 NY    Jan   Customers       500
## 2 NY    Jan   Expenses       1100
## 3 NY    Jan   Sales          1000

然后类似于表1中的帐户重命名

Table1$Account[Table1$Account=="Expected Sales"]<-"Sales"
Table1$Account[Table1$Account=="Expected Expenses"]<-"Expenses"

合并到第三张表Table 3

Table3<- left_join(Table1,Table2)

使用mutate进行所需的操作

Table3 <- Table3 %>% mutate(Value2=Value*Tot_Value)
head(Table3)

## # A tibble: 2 x 6
##   State Month Account  Value Tot_Value Value2
##   <chr> <chr> <chr>    <dbl>     <dbl>  <dbl>
## 1 NY    Jan   Sales     1.04      1000   1040
## 2 NY    Jan   Expenses  1.02      1100   1122

答案 1 :(得分:1)

这就是我对dplyrtidyr所做的事情。 首先,我将您的初始表与rbind合并为一个长格式表。由于您具有每个帐户值的唯一标识符,因此这些标识符不必是单独的表。接下来,我group_by将状态和月份归为一组,假设最终您将具有各种状态/月份。接下来,我根据您指定的“帐户”的值summarise,并创建了两个新列。最后,将其转换为所需的长格式,我使用了gather中的tidyr从宽格式转换为长格式。您可以通过在%>%之后删除来将这些命令分成较小的块,以更好地了解每个步骤的作用。

library(dplyr)
library(tidyr)
rbind(df,df2) %>%
  group_by(State,Month) %>%
  summarise(Expenses = (Value[which(Account == "F Expenses")] + Value[which(Account == "V Expenses")]) * Value[which(Account == "Expected Expenses")],
            Sales = Value[which(Account == "Sales")] * Value[which(Account == "Expected Sales")]) %>%
  gather(New_Account,Value, c(Expenses,Sales))


# A tibble: 2 x 4
# Groups:   State [1]
#  State Month New_Account Value
#  <chr> <chr> <chr>       <dbl>
#1 NY    Jan   Expenses     1122
#2 NY    Jan   Sales        1040

答案 2 :(得分:1)

我建议您检出the concept of "tidy data",因为使用当前具有的结构来处理数据存在一些实际挑战。例如。创建t3只需要2-3行代码,所有这些只是为了解决您的数据体系结构:

library(tidyverse)

t1 <- data.frame(State = rep("NY", 2),
                 Month = rep(as.Date("2018-01-01"), 2),
                 Account = c("Expected Sales", "Expected Expenses"),
                 Value = c(1.04, 1.02),
                 stringsAsFactors = FALSE)

t2 <- data.frame(State = rep("NY", 4),
                 Month = rep(as.Date("2018-01-01"), 4),
                 Account = c("Sales", "Customers", "F Expenses", "V Expenses"),
                 Value = c(1000, 500, 1000, 100),
                 stringsAsFactors = FALSE)

t3 <- t2 %>% 
  spread(Account, Value) %>% 
  inner_join({
    t1 %>% 
      spread(Account, Value)
  }, by = c("State" = "State", "Month" = "Month")) %>% 
  mutate(NewExpenses = (`F Expenses` + `V Expenses`) * `Expected Expenses`,
         NewSales = Sales * `Expected Sales`) %>% 
  select(State, Month, Sales = NewSales, Expenses = NewExpenses) %>% 
  gather(Sales, Expenses, key = `New Account`, value = Value)