from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation
from keras.optimizers import SGD
from keras.datasets import mnist
import numpy
model = Sequential()
model.add(Dense(500,input_shape=(784,))) # 28*28=784
model.add(Activation('tanh')) # tanh
model.add(Dropout(0.5)) # 50% dropout
model.add(Dense(500)) # 500个
model.add(Activation('tanh'))
model.add(Dropout(0.5))
model.add(Dense(10))
model.add(Activation('softmax'))
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd, class_mode='categorical')
(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train = X_train.reshape(X_train.shape[0], X_train.shape[1] * X_train.shape[2])
X_test = X_test.reshape(X_test.shape[0], X_test.shape[1] * X_test.shape[2])
Y_train = (numpy.arange(10) == y_train[:, None]).astype(int)
Y_test = (numpy.arange(10) == y_test[:, None]).astype(int)
model.fit(X_train,Y_train,batch_size=200,epochs=50,shuffle=True,verbose=0,validation_split=0.3)
model.evaluate(X_test, Y_test, batch_size=200, verbose=0)
print("test set")
scores = model.evaluate(X_test,Y_test,batch_size=200,verbose=0)
print("")
print("The test loss is %f" % scores)
result = model.predict(X_test,batch_size=200,verbose=0)
我在分析keras模型时发现了这篇文章Error,它修改了tensorflow库。
因此,我从链接中检查了Keras库代码。但是找不到像['class_mode']这样的东西来修改keras库。接下来,我尝试在重新安装keras之后运行代码,但是即使这样也没有用。
我曾用anaconda导入Kreas,也许我安装错了吗?
有人可以为此提出建议吗?
答案 0 :(得分:1)
删除class_mode ='categorical',它将运行