黑色星期五数据集与Anaconda的LinearRegression

时间:2018-10-31 09:13:45

标签: python dataset anaconda linear-regression

我试图使用带有黑色星期五数据集的蟒蛇来预测购买量 这是我的代码

    train=pd.read_csv("C:\\Users\\User\\Documents\\data sets\\train.csv")
    test=pd.read_csv("C:\\Users\\User\\Documents\\data sets\\test.csv")
    import numpy as np
    frames=[train,test]
    data=pd.concat(frames)
    print(data.shape)
    data.head()
    data.isnull().any()
    data.fillna(999,inplace=True)
    data.head(20)
    data.Age[data["Age"]=="0-17"]="15"
    data["Age"].head(10)
    data.Age[data["Age"]=="18-25"]="21"
    data.Age[data["Age"]=="26-35"]="30"
    data.Age[data["Age"]=="36-45"]="40"
    data.Age[data["Age"]=="46-50"]="48"
    data.Age[data["Age"]=="51-55"]="53"
    data.Age[data["Age"]=="55+"]="60"
   data.Stay_In_Current_City_Years[data["Stay_In_Current_City_Years"]=="4+"]
   ="4"
   data["Age"]=data["Age"].astype(int)
   data["Stay_In_Current_City_Years"]=data["Stay_In_Current_City_Years"].
   astype(int)
   data.dtypes
   data["Marital_Status"]=data["Marital_Status"].astype(int)
   data["Occupation"]=data["Occupation"].astype(int)
   data["Product_Category_1"]=data["Product_Category_1"].astype(int)
   data["Product_Category_1"]=data["Product_Category_1"].astype(int)
   data["Product_Category_2"]=data["Product_Category_2"].astype(float)
   data["Product_Category_3"]=data["Product_Category_3"].astype(float)
   data["Purchase"]=data["Purchase"].astype(float)
   sex=pd.get_dummies(data["Gender"]).iloc[:,1:]
   data1=pd.concat([data,sex],axis=1)
   city=pd.get_dummies(data["City_Category"]).iloc[:,1:]
   data1=pd.concat([data,sex,city],axis=1)
   # cross validation and creating the features and the target variable 
   from sklearn.cross_validation import train_test_split
   y=data1["Purchase"]
   x=data1[["Age","City_Category","Gender","Marital_Status","Occupation",
 "Product_Category_1","Product_Category_2","Product_Category_3","Product_ID"
  ,"Stay_In_Current_City_Years","User_ID","M","B","C"]]
  x_train,x_test,y_train,y_test=train_test_split(x,y)
   # building the regration
   from sklearn import linear_model
   reg=linear_model.LinearRegression()
   reg.fit(x_train,y_train)

但是我继续得到这个:

    ValueError: could not convert string to float: 'P00100642'

是什么意思?我还需要转换为整数才能运行回归吗?  我该如何解决? 谢谢:)

1 个答案:

答案 0 :(得分:1)

机器学习算法仅采用数字数据。 Purchase_ID列没有数字数据,因为它以' P '开头。您正在尝试通过它,因为这样会导致错误。

注意值中的模式,您将看到每个条目均以“ P00”开头。由于它是一个字符串,因此可以用 nothing 代替它。

尝试一下:

data['Product_ID'] = data['Product_ID'].str.replace('P00', '')

之后,您可以使用StandardScaler缩小值。