我正在尝试转换和合并两个熊猫数据框,其中一个包含帐户,他们收到存款的部分,他们的存款信息以及他们在哪一天收到存款;另一个具有帐户和提款信息。问题是,出于索引目的,来自一个数据帧的段信息应与另一个数据帧的信息对齐,而不管是否有撤回。
注意:
帐户数据框代码
http://somewhere.com
帐户数据框
https://somewhere.com
提现数据框代码
accounts = DataFrame({'person':[1,1,1,1,1,2,2,2,2,2],
'segment':[1,2,3,4,5,1,2,3,4,5],
'date_received':[10,20,30,40,50,11,21,31,41,51],
'amount_received':[1,2,3,4,5,6,7,8,9,10]})
accounts = accounts.pivot_table(index=["person"], columns=["segment"])
由于一个人只能有唯一的细分,因此我的列只包含一次唯一的数字,同时仍保留所有数据,这就是为什么此数据框看起来如此不同的原因。
提款数据框
amount_received date_received
segment 1 2 3 4 5 1 2 3 4 5
person
1 1 2 3 4 5 10 20 30 40 50
2 6 7 8 9 10 11 21 31 41 51
合并
withdrawals = DataFrame({'person':[1,1,1,2,2],
'withdrawal_segment':[1,1,5,2,3],
'withdraw_date':[1,2,3,4,5],
'withdraw_amount':[10,20,30,40,50]})
withdrawals = withdrawals.reset_index().pivot_table(index = ['index', 'person'], columns = ['withdrawal_segment'])
合并数据框的问题是取款数据框的细分未与科目细分对齐。 所需的数据框应类似于:
withdraw_date withdraw_amount
withdrawal_segment 1 2 3 5 1 2 3 5
index person
0 1 1.0 NaN NaN NaN 10.0 NaN NaN NaN
1 1 2.0 NaN NaN NaN 20.0 NaN NaN NaN
2 1 NaN NaN NaN 3.0 NaN NaN NaN 30.0
3 2 NaN 4.0 NaN NaN NaN 40.0 NaN NaN
4 2 NaN NaN 5.0 NaN NaN NaN 50.0 NaN
我的问题是我似乎无法跨人员和部门合并。我已经考虑过要插入行和列,但是因为我不知道哪些段是和不打算进行撤回,所以这变得很困难。是否可以合并数据框,使它们在人员和细分中排成一行?谢谢!
答案 0 :(得分:1)
方法1,使用reindex
withdrawals=withdrawals.reindex(pd.MultiIndex.from_product([withdrawals.columns.levels[0],accounts.columns.levels[1]]),axis=1)
merge = accounts.merge(withdrawals, on='person', how='left')
merge
Out[79]:
amount_received date_received \
segment 1 2 3 4 5 1 2 3 4 5
person
1 1 2 3 4 5 10 20 30 40 50
1 1 2 3 4 5 10 20 30 40 50
1 1 2 3 4 5 10 20 30 40 50
2 6 7 8 9 10 11 21 31 41 51
2 6 7 8 9 10 11 21 31 41 51
withdraw_amount withdraw_date
segment 1 2 3 4 5 1 2 3 4 5
person
1 10.0 NaN NaN NaN NaN 1.0 NaN NaN NaN NaN
1 20.0 NaN NaN NaN NaN 2.0 NaN NaN NaN NaN
1 NaN NaN NaN NaN 30.0 NaN NaN NaN NaN 3.0
2 NaN 40.0 NaN NaN NaN NaN 4.0 NaN NaN NaN
2 NaN NaN 50.0 NaN NaN NaN NaN 5.0 NaN NaN
方法2,使用unstack
和stack
merge = accounts.merge(withdrawals, on='person', how='left')
merge.stack(dropna=False).unstack()
Out[82]:
amount_received date_received \
segment 1 2 3 4 5 1 2 3 4 5
person
1 1 2 3 4 5 10 20 30 40 50
1 1 2 3 4 5 10 20 30 40 50
1 1 2 3 4 5 10 20 30 40 50
2 6 7 8 9 10 11 21 31 41 51
2 6 7 8 9 10 11 21 31 41 51
withdraw_amount withdraw_date
segment 1 2 3 4 5 1 2 3 4 5
person
1 10.0 NaN NaN NaN NaN 1.0 NaN NaN NaN NaN
1 20.0 NaN NaN NaN NaN 2.0 NaN NaN NaN NaN
1 NaN NaN NaN NaN 30.0 NaN NaN NaN NaN 3.0
2 NaN 40.0 NaN NaN NaN NaN 4.0 NaN NaN NaN
2 NaN NaN 50.0 NaN NaN NaN NaN 5.0 NaN NaN