我正在尝试使用早期停止和模型检查点来保存最佳模型,同时训练深度卷积神经网络。但是,出现以下错误:
callback.set_model(model)
AttributeError: 'list' object has no attribute 'set_model'
到目前为止,我的代码是:
model = Sequential()
###First block
model.add(Conv2D(100,kernel_size = (3,3),activation = 'relu',padding = 'same',input_shape=(12,11,1)))
model.add(Conv2D(100,kernel_size = (3,3),activation = 'relu',padding = 'same'))
model.add(MaxPooling2D(pool_size = (2,2)))
model.add(Dropout(0.20))
###Second block
model.add(Conv2D(128,kernel_size = (3,3),activation = 'relu',padding = 'same'))
model.add(Conv2D(128,kernel_size = (3,3),activation = 'relu',padding = 'same'))
model.add(MaxPooling2D(pool_size = (2,2)))
model.add(Dropout(0.10))
model.add(Flatten())
#model.add(Dense(100,activation = 'relu',kernel_regularizer=regularizers.l2(0.01)))
model.add(Dense(1000,activation = 'relu',kernel_regularizer=regularizers.l2(0.01)))
model.add(Dropout(0.30))
model.add(Dense(500,activation = 'relu',kernel_regularizer=regularizers.l2(0.01)))
model.add(Dropout(0.10))
#model.add(Dense(500,activation = 'relu',kernel_regularizer=regularizers.l2(0.01)))
#model.add(Dropout(0.15))
model.add(Dense(5,activation = 'softmax'))
model.compile(loss='categorical_crossentropy',
optimizer='adam',
metrics=['accuracy'])
earlystop = [EarlyStopping(monitor='val_acc', min_delta=0.001, patience=5,
verbose=1, mode='auto')]
outputModel = 'outputModel'
model_json = model.to_json()
with open(outputModel+".json", "w") as json_file:
json_file.write(model_json)
modWeightsFilepath=outputModel+"_weights.hdf5"
checkpoint = ModelCheckpoint(modWeightsFilepath, monitor='val_acc', verbose=1, save_best_only=True, save_weights_only=True, mode='auto')
callbacks_list = [earlystop,checkpoint]
history = model.fit(x_train, Y,
batch_size=100, ##number of observations per batch
epochs=100, ##Number of epochs
callbacks = callbacks_list,
verbose=1,
shuffle = True,
validation_split=0.2) ###Data for evaluation
我不知道我在做什么错。我读到ModelCheckPoint和Earlystopping应该作为列表给出,这就是为什么我明确将其设为:
callbacks_list = [earlystop,checkpoint]
我们将不胜感激。
答案 0 :(得分:6)
您对回调是正确的,但是earlystop
已经在此处列出。移除[EarlyStopping(..)]
周围的括号以解决此问题。