将此张量流模型转换为Keras的最直接方法是什么?
这是我的图
batch_size = 1024
embedding_size = 500 # 2^8 Dimension of the embedding vector. Crashed at 158 for Embed size 2656016. So possible values are 154-157. Possible choices 154, 156
num_inputs =5
num_sampled = 128 # Number of negative examples to sample.
graph = tf.Graph()
with graph.as_default():
train_dataset = tf.placeholder(tf.int32, shape=[batch_size, num_inputs ])
train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1])
epochCount = tf.get_variable( 'epochCount', initializer= 0) #to store epoch count to total # of epochs are known
update_epoch = tf.assign(epochCount, epochCount + 1)
embeddings = tf.get_variable( 'embeddings', dtype=tf.float32,
initializer= tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0, dtype=tf.float32) )
softmax_weights = tf.get_variable( 'softmax_weights', dtype=tf.float32,
initializer= tf.truncated_normal([vocabulary_size, embedding_size],
stddev=1.0 / math.sqrt(embedding_size), dtype=tf.float32 ) )
softmax_biases = tf.get_variable('softmax_biases', dtype=tf.float32,
initializer= tf.zeros([vocabulary_size], dtype=tf.float32), trainable=False )
embed = tf.nn.embedding_lookup(embeddings, train_dataset) #train data set is
embed_reshaped = tf.reshape( embed, [batch_size*num_inputs, embedding_size] )
segments= np.arange(batch_size).repeat(num_inputs)
averaged_embeds = tf.segment_mean(embed_reshaped, segments, name=None)
loss = tf.reduce_mean(
tf.nn.sampled_softmax_loss(weights=softmax_weights, biases=softmax_biases, inputs=averaged_embeds,
sampled_values=tf.nn.uniform_candidate_sampler(true_classes=tf.cast(train_labels, tf.int64), num_sampled=num_sampled, num_true=1, unique=True, range_max=vocabulary_size, seed=None),
labels=train_labels, num_sampled=num_sampled, num_classes=vocabulary_size))
optimizer = tensorflow.contrib.opt.ShampooOptimizer(1.0).minimize(loss)
我正在尝试遵循此示例
但是在此过程中迷路了。
到目前为止,我的具体问题是:
如何处理占位符并将数据输入到我的模型中?
如何嵌入查找并平均嵌入?
您如何进行负采样? tf.nn.uniform_candidate_sampler的keras等价物?有没有办法确保阴性样本是唯一的并且与真实标签不同?
如何将损失转换为喀拉拉邦?