我想实现矢量化SGD算法,并想一次生成多个迷你批次。
假设data = np.arange(0, 100)
,miniBatchSize=10
,n_miniBatches=10
和indices = np.random.randint(0, n_miniBatches, 5)
(5个小批量)。我想实现的是
miniBatches = np.zeros(5, miniBatchSize)
for i in range(5):
miniBatches[i] = data[indices[i]: indices[i] + miniBatchSize]
有什么方法可以避免for循环吗?
谢谢!
答案 0 :(得分:0)
可以使用stride tricks:
from numpy.lib.stride_tricks import as_strided
a = as_strided(data[:n_miniBatches], shape=(miniBatchSize, n_miniBatches), strides=2*data.strides, writeable=False)
miniBatches = a[:, indices].T
# E.g. indices = array([0, 7, 1, 0, 0])
Output:
array([[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[ 7, 8, 9, 10, 11, 12, 13, 14, 15, 16],
[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9]])