这是面试问题。
我们希望按级别打印二叉树,但要进行一些更改:
在偶数级别上,打印将从左到右。
在奇数级别,打印将从右到左。
我尝试使用代码here(正常的级别顺序遍历,方法2),只是做了一些更改以保持级别(知道是从左到右还是从右到左打印)和当然要添加正确的打印条件。
不幸的是,下面的代码在不小的树上无法正常工作-我在理解如何在循环中按正确顺序存储节点方面遇到问题。请告诉我该如何解决:
辅助类:
public class Node {
int data;
Node left, right;
public Node(int item) {
data = item;
left = null;
right = null;
}
}
主类:
public class BinaryTree {
class LevelNode {
int level;
Node node;
public LevelNode(int level, Node node) {
this.level = level;
this.node = node;
}
};
private Node root;
void printLevelOrder(){
int level = 0;
Queue<LevelNode> queue = new LinkedList<LevelNode>();
queue.add(new LevelNode(level, root));
while (!queue.isEmpty()){
LevelNode tempNode = queue.poll();
level = tempNode.level;
System.out.print(tempNode.node.data + " ");
if ( (level & 1) == 1 ) {
if (tempNode.node.left != null) {
queue.add(new LevelNode(level + 1, tempNode.node.left));
}
if (tempNode.node.right != null) {
queue.add(new LevelNode(level + 1, tempNode.node.right));
}
}
else {
if (tempNode.node.right != null) {
queue.add(new LevelNode(level + 1, tempNode.node.right));
}
if (tempNode.node.left != null) {
queue.add(new LevelNode(level + 1, tempNode.node.left));
}
}
}
}
}
对于上面的示例,我的代码显示为:1 3 2 7 4
这是生成输出的主要方法:
public static void main (String[] args) {
BinaryTree tree_level = new BinaryTree();
tree_level.root = new Node(1);
tree_level.root.left = new Node(2);
tree_level.root.right = new Node(3);
tree_level.root.left.left = new Node(4);
tree_level.root.right.right = new Node(7);
tree_level.printLevelOrder();
}
答案 0 :(得分:1)
我认为分步完成任务应该更容易,即
在这种情况下,您不需要LevelNode
类来存储级别,因为在处理级别时该级别是已知的。
void printLevelOrderFixed() {
List<Node> currLevel = new ArrayList<>();
currLevel.add(root);
int level = 1;
while(currLevel.size() > 0) {
// Output
currLevel.forEach(x -> System.out.print(x + " "));
// Preparation for next level
List<Node> nextLevel = new ArrayList<>();
for (int i = currLevel.size() - 1; i >= 0; i--) {
Node left = currLevel.get(i).left;
Node right = currLevel.get(i).right;
if (level % 2 == 0) {
if (left != null) nextLevel.add(left);
if (right != null) nextLevel.add(right);
} else {
if (right != null) nextLevel.add(right);
if (left != null) nextLevel.add(left);
}
}
currLevel.clear();
currLevel.addAll(nextLevel);
level++;
}
System.out.println("");
}
使用您的结果和固定结果扩展测试驱动程序:
public static void main(String[] args) {
System.out.println("Example 1. Expected output: 1 3 2 4 7 ");
BinaryTree tree_level = new BinaryTree();
tree_level.root = new Node(1);
tree_level.root.left = new Node(2);
tree_level.root.right = new Node(3);
tree_level.root.left.left = new Node(4);
tree_level.root.right.right = new Node(7);
tree_level.printLevelOrder();
System.out.println();
tree_level.printLevelOrderFixed();
System.out.println();
System.out.println("Example 2. Expected output: 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 ");
/* 1
* 3 2
* 4 5 6 7
* 5 4 3 2 1 0 9 8
* 6 7
* 9 8
*/
BinaryTree tree_level2 = new BinaryTree();
tree_level2.root = new Node(1);
tree_level2.root.left = new Node(3);
tree_level2.root.right = new Node(2);
tree_level2.root.left.left = new Node(4);
tree_level2.root.left.right = new Node(5);
tree_level2.root.right.left = new Node(6);
tree_level2.root.right.right = new Node(7);
tree_level2.root.left.left.left = new Node(5);
tree_level2.root.left.left.right = new Node(4);
tree_level2.root.left.right.left = new Node(3);
tree_level2.root.left.right.right = new Node(2);
tree_level2.root.right.left.left = new Node(1);
tree_level2.root.right.left.right = new Node(0);
tree_level2.root.right.right.left = new Node(9);
tree_level2.root.right.right.right = new Node(8);
tree_level2.root.left.left.left.left = new Node(6);
tree_level2.root.right.right.right.right = new Node(7);
tree_level2.root.left.left.left.left.left = new Node(9);
tree_level2.root.right.right.right.right.right = new Node(8);
tree_level2.printLevelOrder();
System.out.println();
tree_level2.printLevelOrderFixed();
System.out.println();
}
测试驱动程序的输出:
Example 1. Expected output: 1 3 2 4 7
1 3 2 7 4
1 3 2 4 7
Example 2. Expected output: 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
1 2 3 6 7 4 5 0 1 8 9 4 5 2 3 7 6 8 9
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9