我正在努力弄清楚如何创建下表;
使用以下数据集
```{r}
df<-data.frame(ID=c(1,2,3,4,5,6),
Treat_Cont = c("Treatment", "Treatment", "Treatment", "Control", "Control", "Control"),
Q1 = c("Yes", "No", NA, "Yes", "No", NA),
Q2 = c("Yes", "No", NA, "Yes", "No", NA)
)
```
我使用table()
,expss
包或tables
包的主要问题是它们分别处理每个级别的因子,因此表将针对例如Treat_Control == Treatment & Q1 == Yes & Q2 == Yes
。
当前,我处于不确定我的问题是否是数据结构之一的阶段,这意味着我应该重塑数据集,或者是否缺少实现此结果的函数或参数。
谢谢
答案 0 :(得分:1)
expss解决方案。我认为代码不太简洁:
library(expss)
df = data.frame(ID=c(1,2,3,4,5,6),
Treat_Cont = c("Treatment", "Treatment", "Treatment", "Control", "Control", "Control"),
Q1 = c("Yes", "No", NA, "Yes", "No", NA),
Q2 = c("Yes", "No", NA, "Yes", "No", NA)
)
df %>%
tab_total_row_position("none") %>% # suppress totals
tab_rows("|" = Treat_Cont) %>% # "|" suppress var. labels
tab_cols(total(label = "|")) %>% # "|" suppress var. labels
# if_na add values for NA
tab_cells("|" = if_na(Q1, "<NA>")) %>% # "|" suppress var. labels
tab_stat_cases(label = "Q1") %>% # calculate stats
tab_cells("|" = if_na(Q1, "<NA>")) %>% # "|" suppress var. labels
tab_stat_cases(label = "Q2") %>% # calculate stats
tab_pivot(stat_position = "inside_columns") %>% # labels reposition
tab_transpose() # transpose table
更新:较短的解决方案。
df %>%
calculate(
cro(Treat_Cont %nest% if_na(Q1, "<NA>"), list("Q1"), total_row_position = "none") %merge%
cro(Treat_Cont %nest% if_na(Q2, "<NA>"), list("Q2"), total_row_position = "none")
) %>%
tab_transpose()
以R为底的简短解决方案:
with(df,
rbind(
"Q1" = table(Treat_Cont:addNA(Q1)),
"Q2" = table(Treat_Cont:addNA(Q2))
))