我的应用程序当前正在使用CSV解析器来解析csv文件,并
坚持到数据库。它将整个csv加载到内存中并占用大量资源
坚持的时间,有时甚至超时。我在网站上看到了
看到使用Univocity解析器的混合建议。请告知
处理大量数据的最佳方法,所需的时间更少。
谢谢。
代码:
int numRecords = csvParser.parse( fileBytes );
public int parse(InputStream ins) throws ParserException {
long parseTime= System.currentTimeMillis();
fireParsingBegin();
ParserEngine engine = null;
try {
engine = (ParserEngine) getEngineClass().newInstance();
} catch (Exception e) {
throw new ParserException(e.getMessage());
}
engine.setInputStream(ins);
engine.start();
int count = parse(engine);
fireParsingDone();
long seconds = (System.currentTimeMillis() - parseTime) / 1000;
System.out.println("Time taken is "+seconds);
return count;
}
protected int parse(ParserEngine engine) throws ParserException {
int count = 0;
while (engine.next()) //valuesString Arr in Engine populated with cell data
{
if (stopParsing) {
break;
}
Object o = parseObject(engine); //create individual Tos
if (o != null) {
count++; //count is increased after every To is formed
fireObjectParsed(o, engine); //put in into Bo/COl and so valn preparations
}
else {
return count;
}
}
return count;
答案 0 :(得分:0)
使用Apache的Commons CSV库。
答案 1 :(得分:0)
univocity-parsers是加载CSV文件的最佳选择,您可能无法更快地编写任何代码。您遇到的问题可能来自两件事:
1-将所有内容加载到内存中。通常这是一个错误的设计决定,但是如果这样做,请确保为应用程序分配足够的内存。给它更多的内存
例如,使用标志-Xms8G
和Xmx8G
。
2-您可能不批处理插入语句。
我的建议是尝试此操作(使用univocity解析器):
//configure input format using
CsvParserSettings settings = new CsvParserSettings();
//get an interator
CsvParser parser = new CsvParser(settings);
Iterator<String[]> it = parser.iterate(new File("/path/to/your.csv"), "UTF-8").iterator();
//connect to the database and create an insert statement
Connection connection = getYourDatabaseConnectionSomehow();
final int COLUMN_COUNT = 2;
PreparedStatement statement = connection.prepareStatement("INSERT INTO some_table(column1, column2) VALUES (?,?)");
//run batch inserts of 1000 rows per batch
int batchSize = 0;
while (it.hasNext()) {
//get next row from parser and set values in your statement
String[] row = it.next();
for(int i = 0; i < COLUMN_COUNT; i++){
if(i < row.length){
statement.setObject(i + 1, row[i]);
} else { //row in input is shorter than COLUMN_COUNT
statement.setObject(i + 1, null);
}
}
//add the values to the batch
statement.addBatch();
batchSize++;
//once 1000 rows made into the batch, execute it
if (batchSize == 1000) {
statement.executeBatch();
batchSize = 0;
}
}
// the last batch probably won't have 1000 rows.
if (batchSize > 0) {
statement.executeBatch();
}
这应该很快执行,您甚至不需要100mb的内存即可运行。
为了清楚起见,我没有使用任何try / catch / finally块来关闭此处的任何资源。您的实际代码必须能够解决这个问题。
希望有帮助。