使用python

时间:2018-10-29 11:47:00

标签: python pandas list

我有以下情况:

(1)我的网格很大。在某些情况下,我想进一步观察此网格中的特定点/像元。每个单元格都有一个ID并分别坐标XY。因此,在这种情况下,让我们仅观察一个位于网格边缘的单元格-在图像上标记为C。通过某些公式,我可以获得所有第一阶(在图像上标记为1)和第二阶(在图像上标记为2)的所有相邻像元。

(2)在另一个条件下,我在相邻单元格中标识了一些单元格,并在第二张图像上用橙色标记。我想做的是通过优化距离来相互连接所有橙色单元,并且仅考虑min()的距离。我的第一个尝试是仅通过计算到较低阶像元的距离来观察像元。因此,当查看相邻单元2中的单元时,我仅查看1中的单元。连接的解决方案显示在图像2上,但这并不是最佳选择,因为理想的解决方案将比较所有像元的距离,而不仅是比较低邻阶的像元的距离。通过这样做,我得到的情况如图3所示。问题是单元格当然没有连接到中心。该怎么办?

enter image description here

当前代码为:

CO-中心点列表。

data-d具有X,Y值的所有ID

CO_list = CO['ID'].tolist()

neighbor100 = []
for p in IskanjeCO_list:
    d = get_neighbors100k2(p, len(data)) #function that finds the ID's of neighbours of the first order
    neighbor100.append(d)

neighbor200 = []
for p in IskanjeCO_list:
    d = get_neighbors200k2(p, len(data)) #function that finds the ID's of neighbours of the second order
    neighbor200.append(d)

flat100 = []
for i in neighbor100:
  for j in i:
    flat100.append(j)

flat200 = []
for i in neighbor200:
  for j in i:
    flat200.append(j)

neighbors100 = flat100
neighbors200 = flat200

data_sosedi100 = data.iloc[flat100,].reset_index(drop=True)
data_sosedi200 = data.iloc[flat200,].reset_index(drop=True)

dist200 = []

for b in flat200:
    d = ((pd.DataFrame((data_sosedi100['X']* - data.iloc[b,]['X'])**2
         + (data_sosedi100['Y'] - data.iloc[b,]['Y'])**2 )**0.5)).sum(1)
    dist200.append(d.min())

data_sosedi200['dist'] = dist200

data_sosedi200['id'] = None
for e in CO_list:
    data_sosedi200.loc[data_sosedi200['FID_2'].isin((get_neighbors200k2(e, len(data)))),'id'] = e

您对如何进一步优化它有任何建议吗?我希望我展示了整个形象。如果需要,我将进一步澄清。如果您看到了代码的一部分,在这里我可以进一步优化此循环,我将不胜感激!

1 个答案:

答案 0 :(得分:1)

我手动定义了要使用的要点:     将numpy导入为np     从操作员导入itemgetter,attrgetter

nodes = [[-2,1], [-2,0], [-1,0], [0,0], [1,1], [2,1], [2,0], [1,2], [2,2]]
center = [0,0]

def find_neighbor(node):
    n=[]
    for i in range(-1,2):
        for j in range(-1,2):
            if not (i ==0 and j ==0):
                n.append([node[0]+i,node[1]+j])
    return [N for N in n if N in nodes]

def distance_to_center(node):
    return np.sqrt(node[0]**2+node[1]**2)

def distance_between_two_nodes(node1, node2):
    return np.sqrt((node1[0]-node2[0])**2+(node1[1]-node2[1])**2)

def next_node_closest_to_center(node):
    min = distance_to_center(node)
    next_node = node
    for n in find_neighbor(node):
        if distance_to_center(n) < min:
            min = distance_to_center(n)
            next_node = n
    return next_node, min

def get_path_to_center(node):
    node_path = [node]
    distance = 0.
    while node!= center:
        new_node = next_node_closest_to_center(node)[0]
        distance += distance_between_two_nodes(node, new_node)
        node_path.append(new_node)
        node=new_node

    return node_path,distance

def furthest_nodes_from_center(nodes):
    max = 0.
    for n in nodes:
        if get_path_to_center(n)[1] > max:
            furthest_nodes_pathwise = []
            max = get_path_to_center(n)[1]
            furthest_nodes_pathwise.append(n)
        elif get_path_to_center(n)[1] == max:
            furthest_nodes_pathwise.append(n)
    return furthest_nodes_pathwise

def farthest_node_from_center(nodes):
    max = 0.
    farthest_node = center
    for n in nodes:
        if distance_to_center(n) > max:
            max = distance_to_center(n)
            farthest_node = n
    return farthest_node

def closest_node_to_center(nodes):
    min = distance_to_center(farthest_node_from_center(nodes))
    for n in nodes:
        if distance_to_center(n) < min:
            min = distance_to_center(n)
            closest_node = n
    return closest_node

def closest_node_center_with_furthest_distance(node_selection):
    if len(node_selection) == 1:
        return node_selection[0]
    else:
        return closest_node_to_center(node_selection)


print(closest_node_center_with_furthest_distance(furthest_nodes_from_center(nodes)))

输出:

[2, 0]
[Finished in 0.266s]

通过在所有节点上运行,我现在可以确定距离路径最远但仍最靠近中心距离的最远节点是[2,0]而不是[2,2]。所以我们从那里开始。要找到另一侧,只需像我说的那样将数据拆分为负x值和正数即可。如果在仅包含负x值单元格的列表上运行它,则会得到[-2,1]

现在您有2个起始单元格[2,0][-2,1],我将根据您的注释中的步骤,让您找出算法导航到所有单元格经过的中心(您现在可以跳过步骤1,因为这是发布的答案)