我将Windows 10 jupyter笔记本作为服务器,并在其上运行了一些火车。
我已经正确安装了CUDA 9.0和cuDNN,并且python检测到了GPU。这就是我在anaconda提示符下得到的内容。
>>> torch.cuda.get_device_name(0)
'GeForce GTX 1070'
我还通过.cuda()将模型和张量放置在cuda上
model = LogPPredictor(1, 58, 64, 128, 1, 'gsc')
if torch.cuda.is_available():
torch.set_default_tensor_type(torch.cuda.DoubleTensor)
model.cuda()
else:
torch.set_default_tensor_type(torch.FloatTensor)
list_train_loss = list()
list_val_loss = list()
acc = 0
mse = 0
optimizer = args.optim(model.parameters(),
lr=args.lr,
weight_decay=args.l2_coef)
data_train = DataLoader(args.dict_partition['train'],
batch_size=args.batch_size,
pin_memory=True,
shuffle=args.shuffle)
data_val = DataLoader(args.dict_partition['val'],
batch_size=args.batch_size,
pin_memory=True,
shuffle=args.shuffle)
for epoch in tqdm_notebook(range(args.epoch), desc='Epoch'):
model.train()
epoch_train_loss = 0
for i, batch in enumerate(data_train):
list_feature = torch.tensor(batch[0]).cuda()
list_adj = torch.tensor(batch[1]).cuda()
list_logP = torch.tensor(batch[2]).cuda()
list_logP = list_logP.view(-1,1)
optimizer.zero_grad()
list_pred_logP = model(list_feature, list_adj)
list_pred_logP.require_grad = False
train_loss = args.criterion(list_pred_logP, list_logP)
epoch_train_loss += train_loss.item()
train_loss.backward()
optimizer.step()
list_train_loss.append(epoch_train_loss/len(data_train))
model.eval()
epoch_val_loss = 0
with torch.no_grad():
for i, batch in enumerate(data_val):
list_feature = torch.tensor(batch[0]).cuda()
list_adj = torch.tensor(batch[1]).cuda()
list_logP = torch.tensor(batch[2]).cuda()
list_logP = list_logP.view(-1,1)
list_pred_logP = model(list_feature, list_adj)
val_loss = args.criterion(list_pred_logP, list_logP)
epoch_val_loss += val_loss.item()
list_val_loss.append(epoch_val_loss/len(data_val))
data_test = DataLoader(args.dict_partition['test'],
batch_size=args.batch_size,
pin_memory=True,
shuffle=args.shuffle)
model.eval()
with torch.no_grad():
logP_total = list()
pred_logP_total = list()
for i, batch in enumerate(data_val):
list_feature = torch.tensor(batch[0]).cuda()
list_adj = torch.tensor(batch[1]).cuda()
list_logP = torch.tensor(batch[2]).cuda()
logP_total += list_logP.tolist()
list_logP = list_logP.view(-1,1)
list_pred_logP = model(list_feature, list_adj)
pred_logP_total += list_pred_logP.tolist()
mse = mean_squared_error(logP_total, pred_logP_total)
但是在Windows的Process Manager上,每当我开始培训时,只有CPU使用率上升到25%,GPU使用率保持为0。如何解决此问题??
答案 0 :(得分:0)
我在Cuda上使用PyTorch时遇到类似的问题。在寻找可能的解决方案之后,我发现了Soumith本人的以下帖子,发现它非常有帮助。
https://discuss.pytorch.org/t/gpu-supposed-to-be-used-but-isnt/2883
最起码,至少在我看来,我无法在GPU上施加足够的负载。我的应用程序存在瓶颈。尝试另一个示例,或增加批处理大小;没关系。