我在Tensorflow中没有太多经验。我正在尝试使用预训练的ResNet152模型来获取最后一层的激活作为输出。我用于输入的图像存储在我的硬盘中。因此,我需要加载图像,对其进行预处理,然后从预训练的模型中获取输出。我找到了使用图片网址的示例,但是当我尝试使用图片路径时,却无法使用它。这是我到目前为止(目前仅一张图像):
with tf.Graph().as_default():
filename_queue = tf.train.string_input_producer(['./testimg/A_008.jpg'])
reader = tf.WholeFileReader()
key, value = reader.read(filename_queue)
image = tf.image.decode_jpeg(value, channels=3)
preprocessing = preprocessing_factory.get_preprocessing('resnet_v2_152', is_training=False)
processed_image = preprocessing(image, 299,299)
processed_images = tf.expand_dims(processed_image, 0)
with slim.arg_scope(resnet_v2.resnet_arg_scope()):
logits, end_points = resnet_v2.resnet_v2_152(processed_images, is_training=False)
checkpoints_dir='./models/resnet_v2_152'
init_fn = slim.assign_from_checkpoint_fn(
os.path.join(checkpoints_dir, 'resnet_v2_152.ckpt'),
slim.get_variables_to_restore())
with tf.Session() as sess:
init_fn(sess)
np_image, fv = sess.run([image, logits])
我正在Jupyter笔记本中执行此操作。当我执行代码时,没有收到错误消息,它会一直运行,直到重新启动内核为止。
任何想法我做错了什么?我要如何处理多张图片?
答案 0 :(得分:0)
我找到了解决方案,将tf.WholeFileReader()
替换为tf.read_file()
:
graph = tf.Graph()
with graph.as_default():
image_path = image = tf.placeholder(tf.string)
image = tf.image.decode_jpeg(tf.read_file(image_path), channels=3)
preprocessing = preprocessing_factory.get_preprocessing('resnet_v2_152', is_training=False)
processed_image = preprocessing(image, image_size, image_size)
processed_images = tf.expand_dims(processed_image, 0)
with slim.arg_scope(resnet_v2.resnet_arg_scope()):
logits, end_points = resnet_v2.resnet_v2_152(processed_images, is_training=False)
checkpoints_dir='./models/resnet_v2_152'
init_fn = slim.assign_from_checkpoint_fn(
os.path.join(checkpoints_dir, 'resnet_v2_152.ckpt'),
slim.get_variables_to_restore())
images = ['./testimg/A_008.jpg', './testimg/logo.jpg']
with tf.Session(graph=graph) as sess:
init_fn(sess)
for img in images:
fv = sess.run(logits, feed_dict={image_path: img})
print(fv)