我想制作一个UART接收器,它读取8个连续的位,并在末尾带有奇偶校验位和一个简单的停止位。我的FPGA的时钟为100Mhz,传输到uart的数据的波特率为56700。分频系数为1736(56700 * 1736≈100Mhz)。这两个输出是uart解码的输入消息和错误信号,指示uart是否已正确读取输入。这就是我所拥有的:
library ieee;
use ieee.std_logic_1164.ALL;
use ieee.numeric_std.all;
entity uart_receiver is
generic (
clksPerBit : integer := 1736 -- Needs to be set correctly
);
port (
clk : in std_logic;
clk_en_uart : in std_logic ;
reset : in std_logic;
uart_rx : in std_logic;
error : out std_logic;
char : out std_logic_vector(7 downto 0)
);
end uart_receiver;
architecture uart_receiver_arch of uart_receiver is
type etat is (init, start_bit, receiving_bits, parity_bit,
stop_bit );
signal current_state : etat := init ;
signal error_signal : std_logic := '0';
signal clk_count : integer range 0 to clksPerBit-1 := 0;
signal bit_index : integer range 0 to 7 := 0; -- 8 Bits Total
signal data_byte : std_logic_vector(7 downto 0) := (others => '0');
begin
process (clk_en_uart)
begin
if rising_edge(clk_en_uart) then
end if;
end process;
process (clk,reset)
variable check_parity : integer range 0 to 7 := 0;
begin
if (reset = '1') then
current_state <= init;
error_signal <= '0';
clk_count <= 0;
bit_index <= 0;
data_byte <= (others => '0');
elsif rising_edge(clk) then
case current_state is
when init =>
clk_count <= 0;
Bit_Index <= 0;
if uart_rx = '0' then -- Start bit detected
current_state <= start_bit;
else
current_state <= init;
end if;
when start_bit =>
if clk_count = (clksPerBit-1)/2 then
if uart_rx = '0' then
clk_count <= 0; -- reset counter since we found the middle
current_state <= receiving_bits;
else
current_state <= init;
end if;
else
clk_count <= clk_count + 1;
current_state <= start_bit;
end if;
when receiving_bits =>
if clk_count < clksPerBit-1 then
clk_count <= clk_count + 1;
current_state <= receiving_bits;
else
clk_count <= 0;
data_byte(bit_index) <= uart_rx;
if bit_index < 7 then
bit_index <= bit_index + 1;
current_state <= receiving_bits ;
else
bit_index <= 0;
current_state <= parity_bit;
end if;
end if;
when parity_bit =>
if clk_count < clksPerBit-1 then
clk_count <= clk_count + 1;
current_state <= parity_bit;
else
for k in 0 to 7 loop
if ( data_byte(k) = '1' ) then
check_parity := check_parity + 1 ;
end if;
end loop;
if((uart_rx = '1' and check_parity mod 2 = 0) or (uart_rx = '0' and check_parity mod 2 = 1)) then
error_signal <= '1' ;
else
error_signal <= '0';
end if ;
current_state <= stop_bit;
end if;
when stop_bit =>
if clk_count < clksPerBit-1 then
clk_count <= clk_count + 1;
current_state <= stop_bit ;
else
clk_count <= 0;
current_state <= init;
end if;
when others =>
current_state <= init;
end case;
end if;
char <= data_byte ;
error <= error_signal ;
end process;
end uart_receiver_arch;
因此,传输到uart的数据和他的时钟之间存在相移。如果有相移,我不会在正确的时间读取数据。我认为这段代码足以解决此问题。但是,我创建了一个clock_divider,但似乎找不到在此代码中使用它的方法。这是我的时钟分频器:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity clock_divider is
generic (divfactor : positive := 1736);
Port (clk,clk2, reset : in STD_LOGIC ;
clkdiv, activationsig : out STD_LOGIC );
end clock_divider;
architecture clock_divider_arch of clock_divider is
begin
process(clk,reset)
variable clksigv : std_logic := '0' ;
variable activationsigv : std_logic := '0' ;
variable count : integer := 0 ;
begin
if (reset = '1') then
clksigv := '0' ;
activationsigv := '0' ;
count := 0 ;
elsif ( rising_edge(clk) ) then
count := count + 2 ;
if (activationsigv = '1') then
activationsigv := '0';
end if;
if ( count >= divfactor - 1 ) then
clksigv := not(clksigv) ;
if ( clksigv = '1' ) then
activationsigv := '1' ;
end if;
count := 0 ;
end if ;
end if ;
clkdiv <= clksigv ;
activationsig <= activationsigv;
end process ;
end clock_divider_arch;
此时钟分频器的输出是时钟分频和激活信号,当它为'1'时,我必须读取uart中的数据。因此,两个输出也应该是uart的输入。在uart_recevier中,clk_en_uart实际上是时钟分频的,但是我不使用它,因为我不知道如何操作。
我认为解决方案是在进入start_bit情况时“激活”该分频的时钟,以使我有两个具有相同相位和相同频率的时钟,但我也认为无法为一个钟。
我不确定我是否已经解决了我的问题。如果您在我的代码或解释中看不到某些内容,请随时提出问题。
感谢您的帮助,希望我能找到解决方案。
答案 0 :(得分:0)
对于此问题,建议的解决方案之类的声音很复杂。
通常的方法是,接收器只寻找起始位的下降沿,然后计数半个时间(在您的情况下为1736/2个周期),然后在此处采样起始位值,然后对每个完整位时间后的数据,奇偶校验和停止位值(在您的情况下为1736个周期)。之后,开始寻找起始位的新下降沿。
于是,发射器和接收器之间的频率差(通常)很小,以至于采样率实际上只在相对较低比特率的11位消息的中间,并且计数器在起始位的下降沿重启,从而确保了消除了长时间频率差异的任何影响。