我正在尝试学习如何使用Spark(以Java编写代码(请不要使用Scala代码))。我正在尝试实现非常简单的 hello world 示例Spark,字数统计。
我已经从Spark的文档quick start中借用了代码:
/* SimpleApp.java */
import org.apache.spark.sql.SparkSession;
import org.apache.spark.sql.Dataset;
public class SimpleApp {
public static void main(String[] args) {
String logFile = "YOUR_SPARK_HOME/README.md"; // Should be some file on your system
SparkSession spark = SparkSession.builder().appName("Simple Application").getOrCreate();
Dataset<String> logData = spark.read().textFile(logFile).cache();
long numAs = logData.filter(s -> s.contains("a")).count();
long numBs = logData.filter(s -> s.contains("b")).count();
System.out.println("Lines with a: " + numAs + ", lines with b: " + numBs);
spark.stop();
}
}
一切都很好,现在我想将filter
替换为flatMap
,然后将map
替换为flatMap
。到目前为止,我已经收到 logData.flatMap((FlatMapFunction<String, String>) l -> {
return Arrays.asList(l.split(" ")).iterator();
}, Encoders.STRING());
:
(word, 1)
现在,我想将每个单词映射到Tuple2 String
,然后按键对它们进行分组。但是问题是我找不到从(String, Long)
到mapToPair
的方法。大多数文档都谈论Dataset
,但是String
没有这种方法!
有人可以帮助我将Tuple2<String, Long>
映射到Tuple2
吗?顺便说一句,我什至不确定我在寻找 logData.flatMap((FlatMapFunction<String, String>) l -> {
return Arrays.asList(l.split(" ")).iterator();
}, Encoders.STRING())
.map(new Function<String, Tuple2<String, Long>>() {
public Tuple2<String, Long> call(String str) {
return new Tuple2<String, Long>(str, 1L);
}
})
.count()
还是其他课程。
[更新]
根据@mangusta提供的建议,我尝试了以下方法:
Error:(108, 17) java: no suitable method found for map(<anonymous org.apache.spark.api.java.function.Function<java.lang.String,scala.Tuple2<java.lang.String,java.lang.Long>>>)
method org.apache.spark.sql.Dataset.<U>map(scala.Function1<java.lang.String,U>,org.apache.spark.sql.Encoder<U>) is not applicable
(cannot infer type-variable(s) U
(actual and formal argument lists differ in length))
method org.apache.spark.sql.Dataset.<U>map(org.apache.spark.api.java.function.MapFunction<java.lang.String,U>,org.apache.spark.sql.Encoder<U>) is not applicable
(cannot infer type-variable(s) U
(actual and formal argument lists differ in length))
并遇到此编译错误:
map
好像- alert: NodeMemory Usage(development)
annotations:
description: '{{$labels.instance}} Memory usage is critical (current value is: {{ $value }})'
summary: High Memory usage detected
expr: |
1 - sum by(node) ((node_memory_MemFree{job="node-exporter"} + node_memory_Cached{job="node-exporter"} + node_memory_Buffers{job="node-exporter"}) * on(namespace, pod) group_left(node) node_namespace_pod:kube_pod_info:) / sum by(node) (node_memory_MemTotal{job="node-exporter"}* on(namespace, pod) group_left(node) node_namespace_pod:kube_pod_info:) > 0.70
for: 1s
labels:
severity: warning
函数接受两个参数。我不确定应该作为第二个参数传递什么。
答案 0 :(得分:1)
如果您需要使用Tuple2
,则应使用Scala Java库,即scala-library.jar
要从某些JavaRDD<String> data
中准备元组,可以将以下函数应用于该RDD:
JavaRDD<Tuple2<String,Long>> tupleRDD = data.map(
new Function<String, Tuple2<String, Long>>() {
public Tuple2<String, Long> call(String str) {
return new Tuple2<String, Long>(str, 1L);
}//end call
}//end function
);//end map
答案 1 :(得分:1)
我不确定错误的原因,但是您可以尝试以下代码
final String sparkHome = "/usr/local/Cellar/apache-spark/2.3.2";
SparkConf conf = new SparkConf()
.setMaster("local[*]")
.setAppName("spark-example")
.setSparkHome(sparkHome + "/libexec");
SparkSession spark = SparkSession.builder().config(conf).getOrCreate();
Dataset<Row> df = spark.read().textFile(sparkHome + "/README.md")
.flatMap(line -> Arrays.asList(line.split(" ")).iterator(), Encoders.STRING())
.filter(s -> !s.isEmpty())
.map(word -> new Tuple2<>(word.toLowerCase(), 1L), Encoders.tuple(Encoders.STRING(), Encoders.LONG()))
.toDF("word", "count")
.groupBy("word")
.sum("count").orderBy(new Column("sum(count)").desc()).withColumnRenamed("sum(count)", "_cnt");
df.show(false);
您应该期待此输出
+-------------+----+
|word |_cnt|
+-------------+----+
|the |25 |
|to |19 |
|spark |16 |
|for |15 |
|and |10 |
|a |9 |
|## |9 |
|you |8 |
|run |7 |
|on |7 |
|can |7 |
|is |6 |
|in |6 |
|of |5 |
|using |5 |
|including |4 |
|if |4 |
|with |4 |
|documentation|4 |
|an |4 |
+-------------+----+
only showing top 20 rows
答案 2 :(得分:0)
试试这个
logData.flatMap((FlatMapFunction<String,String>)line -> Arrays.asList(line.split(" ")).iterator(), Encoders.STRING()).groupBy("value").count().show();