我有一个具有1000万条记录和150列的spark数据框。我正在尝试将其转换为熊猫DF。
x = df.toPandas()
# do some things to x
它以ordinal must be >= 1
失败。我认为这是因为要一次处理才大。是否可以对每个块进行分块并将其转换为熊猫DF?
完整堆栈:
ValueError Traceback (most recent call last)
<command-2054265283599157> in <module>()
158 from db.table where snapshot_year_month=201806""")
--> 159 ps = x.toPandas()
160 # ps[["pol_nbr",
161 # "pol_eff_dt",
/databricks/spark/python/pyspark/sql/dataframe.py in toPandas(self)
2029 raise RuntimeError("%s\n%s" % (_exception_message(e), msg))
2030 else:
-> 2031 pdf = pd.DataFrame.from_records(self.collect(), columns=self.columns)
2032
2033 dtype = {}
/databricks/spark/python/pyspark/sql/dataframe.py in collect(self)
480 with SCCallSiteSync(self._sc) as css:
481 port = self._jdf.collectToPython()
--> 482 return list(_load_from_socket(port, BatchedSerializer(PickleSerializer())))
483
答案 0 :(得分:0)
假设您的表具有整数键/索引,则可以使用循环+查询读取大数据帧的块。
我远离df.toPandas()
,这会带来很多开销。相反,我有一个辅助函数,可将pyspark
实例列表的Row
查询结果转换为pandas.DataFrame
。
In [1]: from pyspark.sql.functions import col
In [2]: from pyspark.sql import SparkSession
In [3]: import numpy as np
In [4]: import pandas as pd
In [5]: def to_pandas(rows):
: row_dicts = [r.asDict() for r in rows]
: return pd.DataFrame.from_dict(row_dicts)
:
要查看此功能的实际效果,让我们制作一个小的示例数据框。
In [6]: from string import ascii_letters
: n = len(ascii_letters)
: df = pd.DataFrame({'id': range(n),
: 'num': np.random.normal(10,1,n),
: 'txt': list(ascii_letters)})
: df.head()
Out [7]:
id num txt
0 0 9.712229 a
1 1 10.281259 b
2 2 8.342029 c
3 3 11.115702 d
4 4 11.306763 e
In [ 8]: spark = SparkSession.builder.appName('Ops').getOrCreate()
: df_spark = spark.createDataFrame(df)
: df_spark
Out[ 9]: DataFrame[id: bigint, num: double, txt: string]
通过对索引进行过滤来收集大块。
In [10]: chunksize = 25
: for i in range(0, n, chunksize):
: chunk = (df_spark.
: where(col('id').between(i, i + chunksize)).
: collect())
: pd_df = to_pandas(chunk)
: print(pd_df.num.mean())
:
9.779573360741152
10.23157424753804
9.550750629366462