我想比较两个周期(1和2)之间的数据以获取配对数据。 我使用了wilcoxon秩和检验,但是从R中获得了两个不同的结果,其中一个等于SAS。
哪个是我的数据中正确的一个?
wilcox.test(val ~ time, data = pcs, paired = TRUE)
Wilcoxon signed rank test
data: val by time
V = 9, p-value = 0.4688
alternative hypothesis: true location shift is not equal to 0
> pcs$val<-as.numeric(pcs$val)
> pcs$time<-as.numeric(pcs$time)
> wilcox.test(pcs$time,pcs$val, paired = TRUE)
Wilcoxon signed rank test
data: pcs$time and pcs$val
V = 50, p-value = 0.9032
alternative hypothesis: true location shift is not equal to 0
La procedura UNIVARIATE
Variabile: pcs
Moments
N 7 Sum Weights 7
Mean 10.5371745 Sum Observations 73.7602214
Std Deviation 32.3329768 Variance 1045.42139
Skewness -0.2374077 Kurtosis -0.6500825
Uncorrected SS 7049.75266 Corrected SS 6272.52833
Coeff Variation 306.846744 Std Error Mean 12.2207165
Basic Statistical Measures
Location Variability
Mean 10.53717 Std Deviation 32.33298
Median 7.58871 Variance 1045
Mode . Range 93.59909
Interquartile Range 56.97430
Tests for Location: Mu0=0
Test Statistic p Value
Student's t t 0.862239 Pr > |t| 0.4217
Sign M 1.5 Pr >= |M| 0.4531
Signed Rank S 5 Pr >= |S| 0.4688
Quantiles (Definition 5)
Level Quantile
100% Max 55.37457
99% 55.37457
95% 55.37457
90% 55.37457
75% Q3 36.56551
50% Median 7.58871
25% Q1 -20.40879
10% -38.22452
5% -38.22452
1% -38.22452
0% Min -38.22452
Extreme Observations
Lowest Highest
Value Obs Value Obs
-38.22452 5 7.18289 6
-20.40879 1 7.58871 7
7.18289 6 25.68185 4
7.58871 7 36.56551 2
25.68185 4 55.37457 3
我通常使用SAS,但是看这个图,p值0.4688对我来说太奇怪了:
所以我尝试了R,但是我没有明显的区别,所以我不明白...
非常感谢您!