Python档案读取问题,可能发生infile循环?

时间:2018-10-24 16:32:54

标签: python python-3.x file loops readline

问题如下; “编写Python程序以读取包含湖泊和鱼类数据的文件,并设置报告 表格格式的湖泊识别号,湖泊名称和鱼重(使用 带格式的字符串区域)。该程序应计算平均鱼重 报告。”

湖泊识别;

1000 Chemo
1100 Greene
1200 Toddy

我必须阅读的文件“ FishWeights.txt”包含以下数据;

1000 4.0
1100 2.0
1200 1.5
1000 2.0
1000 2.2
1100 1.9
1200 2.8

我的代码;

f = open("fishweights.txt")
print(f.read(4), "Chemo", f.readline(4))
print(f.read(5), "Greene", f.read(5))
print(f.read(4), "Toddy", f.read(5))
print(f.read(5), "Chemo", f.read(4))
print(f.read(5), "Chemo", f.read(4))
print(f.read(5), "Greene", f.read(4))
print(f.read(5), "Toddy", f.read(4))

我收到的输出是;

1000 Chemo  4.0

1100 Greene  2.0

1200 Toddy  1.5

1000  Chemo 2.0

1000  Chemo 2.2

1100  Greene 1.9

1200  Toddy 2.8 

在一定程度上我必须显示湖泊的ID号,名称和每个湖泊的鱼重,这是正确的。但是我需要能够计算出最终所有鱼的重量的平均值。 输出应整齐格式化,外观如下;

1000     Chemo      4.0
1100     Greene     2.0
1200     Toddy      1.5
1000     Chemo      2.0
1000     Chemo      2.2
1100     Greene     1.9
1200     Toddy      2.8
The average fish weight is: 2.34

感谢您的帮助,这里只是一名初学者,他们寻求帮助以全面了解该主题。谢谢!

5 个答案:

答案 0 :(得分:1)

是的,您需要遍历行。这是您要寻找的结构:

with open("fishweights.txt") as fo:
    for line in fo:
        pass

现在,为了检索每行的每一段,您可以使用line.split()。假设id的长度是固定的,那么读取固定数量的字节(如您所做的)是很好的。您确定每个ID始终都是4位数字吗?这样的事情可能会更好:

raw_data = []
with open("fishweights.txt") as fo:
    for line in fo:
        row = line.strip().split()
        if not row:
            continue  # ignore empty lines
        id = int(row[0])
        no = float(row[1])
        raw_data.append((id, no))

现在您拥有原始数据,需要对其进行汇总:

sum = 0
count = 0
for id, no in raw_data:
    sum += no
    count += 1
avg = sum / count

或单线

avg = sum(no for id, no in raw_data) / len(raw_data)

最后,您需要将ID映射到名称以进行最终打印:

id_to_name = {
    1000: 'Chemo',
    1100: 'Greene',
    1200: 'Toddy',
}
for id, no in raw_data:
    print(id, id_to_name[id], no)
print('Average: ', avg)

当然,所有三个循环都可以组合成一个循环。我对其进行了划分,以便您可以清楚地看到代码的每个阶段。最终的结果(略有优化)可能如下所示:

id_to_name = {
    1000: 'Chemo',
    1100: 'Greene',
    1200: 'Toddy',
}
sum = 0
count = 0
with open("fishweights.txt") as fo:
    for line in fo:
        row = line.strip().split()
        if not row:
            continue  # ignore empty lines
        id = int(row[0])
        no = float(row[1])
        sum += no
        count += 1
        print(id, id_to_name[id], no)
print('Average:', sum/count)

答案 1 :(得分:0)

您不需要使用偏移量来读取行。另外,您可以使用public Integer multiply(Integer first, Integer second, Integer result){ return first * second; } 确保完成后关闭文件。对于平均值,您可以将所有数字放在列表中,然后在末尾找到平均值。使用字典将湖泊ID映射到名称:

with

输出:

lakes = {
    1000: "Chemo",
    1100: "Greene",
    1200: "Toddy"
}
allWeights = []

with open("test.txt", "r") as f:
    for line in f:
        line = line.strip()  # get rid of any whitespace at the end of the line
        line = line.split()

        lake, weight = line
        lake = int(lake)
        weight = float(weight)
        print(lake, lakes[lake], weight, sep="\t")
        allWeights.append(weight)

avg = sum(allWeights) / len(allWeights)
print("The average fish weight is: {0:.2f}".format(avg)) # format to 2 decimal places

有更有效的方法来执行此操作,但这可能是最简单的方法来帮助您了解正在发生的事情。

答案 2 :(得分:0)

您可以将湖泊名称存储到字典中,并将数据存储在列表中。在此示例中,您仅需从那里遍历列表fish并获取与id对应的湖泊名称。最后,只需将列表中的weight加起来并除以fish的长度,就可以在下面打印平均值。

with open('LakeID.txt','r') as l:
    lake = l.readlines()
    lake = dict([i.rstrip('\n').split() for i in lake])

with open('FishWeights.txt','r') as f:
    fish = f.readlines()
    fish = [i.rstrip('\n').split() for i in fish]

for i in fish:
    print(i[0],lake[i[0]],i[1])    

print('The total average is {}'.format(sum(float(i[1]) for i in fish)/len(fish))) 

还建议您使用with open(..)上下文管理器,以确保文件退出时已关闭。

答案 3 :(得分:0)

因此,您可以在此处将鱼的体重和湖泊数据存储在两个阵列中。请参阅以下内容,其中读取每行,然后将它们分成鱼的重量列表和湖泊数据列表。

text=f.readlines()
fishWeights=[] 
lakeData=[]
for item in text:
    fishWeights.append(item.split(' ')[1])
    lakeData.append(item.split(' ')[1])

您可以从此处输出信息

for i in range(len(fishWeights)) :
    print(lakeData[i], "Your Text", fishWeights[i])

您可以计算出平均值

total=0
for weight in fishWeights:
    total+=weight
total/=len(fishWeights) 

答案 4 :(得分:0)

可以使用数据框轻松实现。 请在下面找到示例代码。

import pandas as pd

# load lake data into a dataframe
lakeDF = pd.read_csv('Lake.txt', sep=" ", header=None)
lakeDF.columns = ["Lake ID", "Lake Name"]
#load fish data into a dataframe
fishWeightDF = pd.read_csv('FishWeights.txt', sep=" ", header=None)
fishWeightDF.columns = ["Lake ID", "Fish Weight"]
#sort fishweight with 'Lake ID' (common field in both lake and fish)
fishWeightDF = fishWeightDF.sort_values(by= ['Lake ID'],ascending=True)
# join fish with lake
mergedFrame = pd.merge_asof(
    fishWeightDF, lakeDF,
    on='Lake ID'
    )
#print the result
print(mergedFrame)
#find the average
average = mergedFrame['Fish Weight'].mean()
print(average)