我有一个xarray DataArray da
,其中包含爱尔兰的一部分数据,如下所示:
<xarray.DataArray 'co2' (lat: 733, lon: 720)>
array([[nan, nan, nan, ..., nan, nan, nan],
[nan, nan, nan, ..., nan, nan, nan],
[nan, nan, nan, ..., nan, nan, nan],
...,
[nan, nan, nan, ..., nan, nan, nan],
[nan, nan, nan, ..., nan, nan, nan],
[nan, nan, nan, ..., nan, nan, nan]])
Coordinates:
* lat (lat) float32 49.9 49.908333 49.916664 49.924995 49.933327 ...
* lon (lon) float32 -11.0 -10.991667 -10.983334 -10.975 -10.966667 ...
我可以这样映射它:
import matplotlib.pyplot as plt
import xarray
import os
from mpl_toolkits.basemap import Basemap, cm
m= Basemap(projection='cyl',lat_0=ds.co2.lat[0],lon_0=ds.co2.lon[len(ds.co2.lon)/2])
m.drawcoastlines()
da.plot()
问题在于纬度/经度网格线无法绘制。
当我使用子午线命令时:
meridians = np.arange(10.,351.,20.)
m.drawmeridians(meridians,labels=[True,False,False,True])
我收到以下错误:
ValueError: dimensions () must have the same length as the number of data dimensions, ndim=1
我不知道接下来要尝试什么。
编辑:完整的错误跟踪:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-46-45a293c8bb99> in <module>()
4
5 # draw grid plots
----> 6 m.drawmeridians(np.arange(-8.0,2.0,1.0),labels=[1,0,0,0]) #longitudes
7 m.drawparallels(np.arange(51.0,59.0,1.0),labels=[0,0,0,1]) #latitudes
8
C:\Users\AppData\Local\Continuum\Anaconda\lib\site- packages\mpl_toolkits\basemap\__init__.pyc in drawmeridians(self, meridians, color, linewidth, zorder, dashes, labels, labelstyle, fmt, xoffset, yoffset, ax, latmax, **kwargs)
2593 # don't really know why, but this appears to be needed to
2594 # or lines sometimes don't reach edge of plot.
-> 2595 testx = np.logical_and(x>=self.xmin-3*xdelta,x<=self.xmax+3*xdelta)
2596 x = np.compress(testx, x)
2597 y = np.compress(testx, y)
C:\Users\\AppData\Local\Continuum\Anaconda\lib\site-packages\xarray\core\dataarray.pyc in func(self, other)
1550
1551 variable = (f(self.variable, other_variable)
-> 1552 if not reflexive
1553 else f(other_variable, self.variable))
1554 coords = self.coords._merge_raw(other_coords)
C:\Users\\AppData\Local\Continuum\Anaconda\lib\site-packages\xarray\core\variable.pyc in func(self, other)
1164 if not reflexive
1165 else f(other_data, self_data))
-> 1166 result = Variable(dims, new_data)
1167 return result
1168 return func
C:\Users\\AppData\Local\Continuum\Anaconda\lib\site-packages\xarray\core\variable.pyc in __init__(self, dims, data, attrs, encoding, fastpath)
255 """
256 self._data = as_compatible_data(data, fastpath=fastpath)
--> 257 self._dims = self._parse_dimensions(dims)
258 self._attrs = None
259 self._encoding = None
C:\Users\\AppData\Local\Continuum\Anaconda\lib\site-packages\xarray\core\variable.pyc in _parse_dimensions(self, dims)
364 raise ValueError('dimensions %s must have the same length as the '
365 'number of data dimensions, ndim=%s'
--> 366 % (dims, self.ndim))
367 return dims
368
ValueError: dimensions () must have the same length as the number of data dimensions, ndim=1
答案 0 :(得分:3)
答案 1 :(得分:1)
TL:DR-使用您的数据集代码没有问题,让我们找出原因
我使用了您的小型数据集,以及以下代码:
await page.evaluateOnNewDocument(()=>{
var style = document.createElement('style');
style.type = 'text/css';
style.innerHTML = `.body{background: 'red'}`; // the css content goes here
document.getElementsByTagName('head')[0].appendChild(style);
});
我得到了这张图:
添加子午线时,请使用:
ds=xarray.open_dataset(r"C:\Users\SHIR\Downloads\OneYear.nc")
da=ds.co2
m= Basemap(projection='cyl',lat_0=ds.co2.lat[0],lon_0=ds.co2.lon[len(ds.co2.lon)/2])
m.drawcoastlines()
da.plot()
plt.show()
我得到了-
我能想到的事情导致了我们之间的这种差异:
首先-较小的数据集-请尝试发送给我的较小的数据集,并让我知道是否再次收到错误消息
第二个-软件包和版本-我正在使用python 2.7。我以前没有底图,所以我尝试使用conda进行安装,但遇到了很多问题。最后,我使用conda({{1})卸载了matplotlib,使用pip(ds=xarray.open_dataset(r"C:\Users\SHIR\Downloads\OneYear.nc")
da=ds.co2
m= Basemap(projection='cyl',lat_0=ds.co2.lat[0],lon_0=ds.co2.lon[len(ds.co2.lon)/2])
m.drawcoastlines()
meridians = np.arange(10.,351.,20.)
m.drawmeridians(meridians,labels=[True,False,False,True])
da.plot()
plt.show()
)进行了重新安装,并手动安装了底图,如this answer中所述。我使用了conda uninstall matplotlib
文件。
我真的不确定它是否很聪明,也没有弄乱conda,但这是唯一对我有用的东西。也许尝试只卸载底图,而不是首先卸载matplotlib(之所以这样做,是因为我已经把它弄乱了……)