我正在使用Scala解释器评估来自配置的Scala语句。
示例代码为:
import org.apache.spark.SparkConf
import org.apache.spark.sql.{DataFrame, SparkSession}
import scala.tools.nsc.Settings
import scala.tools.nsc.interpreter.IMain
object BSFTest {
def main(args: Array[String]): Unit = {
val sparkConf = new SparkConf()
.setAppName("TEST")
.setMaster("local") // spark://127.0.0.1:7077
val sparkSession = SparkSession.builder()
.appName("TEST")
.config(sparkConf)
.enableHiveSupport()
.getOrCreate()
import sparkSession.sql
sql ("DROP DATABASE IF EXISTS test CASCADE")
sql(s"CREATE DATABASE test")
sql ("CREATE TABLE test.box_width (id INT, width INT)")
sql ("INSERT INTO test.box_width VALUES (1,1), (2,2)")
sql ("CREATE TABLE test.box_length (id INT, length INT)")
sql ("INSERT INTO test.box_length VALUES (1,10), (2,20)")
val widthDF:DataFrame = sql("select * from test.box_width")
val lengthDF = sql("select * from test.box_length")
val settings = new Settings
settings.usejavacp.value = true
settings.deprecation.value = true
settings.embeddedDefaults(this.getClass().getClassLoader())
val eval = new IMain(settings)
eval.bind("lengthDF", "org.apache.spark.sql.DataFrame", lengthDF)
eval.bind("widthDF", "org.apache.spark.sql.DataFrame", widthDF)
val clazz1 = "lengthDF.join(widthDF, \"id\")" //STATEMENT FROM CONFIGURATION
val evaluated = eval.interpret(clazz1)
val res = eval.valueOfTerm("res0").get.asInstanceOf[DataFrame]
println("PRINT SCHEMA: " + res.schema) //This statement is running fine
res.show() //EXCEPTION HERE
}
}
执行代码时出现以下错误:
lengthDF: org.apache.spark.sql.DataFrame = [id: int, length: int]
widthDF: org.apache.spark.sql.DataFrame = [id: int, width: int]
res0: org.apache.spark.sql.DataFrame = [id: int, length: int ... 1 more field]
PRINT SCHEMA: StructType(StructField(id,IntegerType,true), StructField(length,IntegerType,true), StructField(width,IntegerType,true))
18/10/24 15:08:14 ERROR CodeGenerator: failed to compile: org.codehaus.janino.InternalCompilerException: Compiling "GeneratedClass": Class 'org.apache.spark.sql.catalyst.expressions.codegen.GeneratedClass' was loaded through a different loader
/* 001 */ public java.lang.Object generate(Object[] references) {
/* 002 */ return new SpecificSafeProjection(references);
/* 003 */ }
/* 004 */
/* 005 */ class SpecificSafeProjection extends org.apache.spark.sql.catalyst.expressions.codegen.BaseProjection {
/*....
Caused by: org.codehaus.janino.InternalCompilerException: Class 'org.apache.spark.sql.catalyst.expressions.codegen.GeneratedClass' was loaded through a different loader
at org.codehaus.janino.SimpleCompiler$2.getDelegate(SimpleCompiler.java:410)
at org.codehaus.janino.SimpleCompiler$2.accept(SimpleCompiler.java:353)
at org.codehaus.janino.UnitCompiler.getType(UnitCompiler.java:6130)
我无法理解,即使res.schema(从DataFrame获取模式)按预期运行时,res.show(从DataFrame检索数据并打印)也会引发异常
版本:
scalaVersion := "2.11.11"
libraryDependencies += "org.apache.spark" %% "spark-core" % "2.2.2"
libraryDependencies += "org.apache.spark" %% "spark-sql" % "2.2.2"
libraryDependencies += "org.apache.spark" %% "spark-hive" % "2.2.2"
我该怎么解决这个问题?
答案 0 :(得分:0)
我已经解决了这个问题,参考了https://stackoverflow.com/a/6164608/811602
现在,我正在运行时创建和加载类: 这是工作代码
import org.apache.spark.SparkConf
import org.apache.spark.sql.{DataFrame, SparkSession}
import scala.tools.nsc.Settings
import scala.tools.nsc.interpreter.IMain
import java.util.concurrent.atomic.AtomicInteger
object DynamicClassLoader {
val offset = new AtomicInteger()
def main(args: Array[String]): Unit = {
val sparkConf = new SparkConf()
.setAppName("TEST")
.setMaster("local") // spark://127.0.0.1:7077
val sparkSession = SparkSession.builder()
.appName("TEST")
.config(sparkConf)
.enableHiveSupport()
.getOrCreate()
import sparkSession.sql
sql ("DROP DATABASE IF EXISTS test CASCADE")
sql(s"CREATE DATABASE test")
sql ("CREATE TABLE test.box_width (id INT, width INT)")
sql ("INSERT INTO test.box_width VALUES (1,1), (2,2)")
sql ("CREATE TABLE test.box_length (id INT, length INT)")
sql ("INSERT INTO test.box_length VALUES (1,10), (2,20)")
val widthDF = sql("select * from test.box_width")
val lengthDF = sql("select * from test.box_length")
var udfclassName:String = "AClass" + offset.getAndIncrement()
var statements = """
| val result = input1.join(input2, "id")
| return result
| """.stripMargin
val srcA = """
| class """.stripMargin + udfclassName + """ extends SomeTrait {
| import org.apache.spark.sql.DataFrame
| def someMethod(input1:DataFrame, input2: DataFrame): DataFrame = {
| """.stripMargin +
statements +
"""}
| }
""".stripMargin
val settings = new Settings
settings.usejavacp.value = true
settings.deprecation.value = true
settings.embeddedDefaults(this.getClass().getClassLoader())
val eval = new IMain(settings)
eval.compileString(srcA)
val classA = eval.classLoader.loadClass(udfclassName)
eval.close()
val objA = classA.newInstance().asInstanceOf[SomeTrait]
val resultDF = objA.someMethod(lengthDF, widthDF)
println(resultDF.schema)
resultDF.show()
}
}
trait SomeTrait { def someMethod(input1:DataFrame, input2: DataFrame): DataFrame}
尽管我没有因为发布的问题而被阻止,并想出了实现此目的的替代方法,但问题仍然存在,因为根本的异常原因仍然可以找到并解决