import numpy as np
def data_iter_random(data_indices, num_steps, batch_size):
example_size = len(data_indices)/num_steps
epoch_size = example_size/batch_size
example = [data_indices[i*num_steps:i*num_steps + num_steps]
for i in range(int(example_size))]
shuffle_example = np.random.shuffle(example)
print(shuffle_example)
data_iter_random(list(range(30)), 5, 2)
输出为None
谁能告诉我出什么问题了?
答案 0 :(得分:0)
问题是np.random.shuffle
就地修改了序列。来自documentation:
通过改组其内容就地修改序列。
仅打印example
:
import numpy as np
def data_iter_random(data_indices, num_steps, batch_size):
example_size = len(data_indices) / num_steps
epoch_size = example_size / batch_size
example = [data_indices[i * num_steps:i * num_steps + num_steps]
for i in range(int(example_size))]
np.random.shuffle(example)
print(example)
data_iter_random(list(range(30)), 5, 2)
输出
[[25, 26, 27, 28, 29], [5, 6, 7, 8, 9], [0, 1, 2, 3, 4], [20, 21, 22, 23, 24], [15, 16, 17, 18, 19], [10, 11, 12, 13, 14]]
答案 1 :(得分:0)
这是因为np.random.shuffle
是“就地”方法。
因此无需分配
就地完成
医生说:“通过改组其内容就地修改序列。”
也是这样:
np.random.shuffle(example)
print(example)
对于这些行。
完整代码:
import numpy as np
def data_iter_random(data_indices, num_steps, batch_size):
example_size = len(data_indices)/num_steps
epoch_size = example_size/batch_size
example = [data_indices[i*num_steps:i*num_steps + num_steps]
for i in range(int(example_size))]
np.random.shuffle(example)
print(example)
data_iter_random(list(range(30)), 5, 2)
输出:
[[5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [25, 26, 27, 28, 29], [15, 16, 17, 18, 19], [0, 1, 2, 3, 4], [20, 21, 22, 23, 24]]
几乎没有这样的功能。