熊猫groupby然后填写缺失的行

时间:2018-10-24 01:28:22

标签: python pandas

我有一个结构如下的数据框:

df_all:

day_time    LCLid   energy(kWh/hh)
2014-02-08 23:00:00     MAC000006   0.077
2014-02-08 23:30:00     MAC000006   0.079
...
2014-02-08 23:00:00     MAC000007   0.045
...

我要用先前值和尾随值填充的数据中缺少四个连续的日期时间(在所有LCLid上)。

如果将数据帧拆分为子数据帧(df),则每个LCLid对应一个子帧,例如:

gb = df.groupby('LCLid')    
df_list = [gb.get_group(x) for x in gb.groups]

然后我可以对df_list中的每个df执行此操作:

#valid data before gap
prev_row = df.loc['2013-09-09 22:30:00'].copy()
#valid data after gap
post_row = df.loc['2013-09-10 01:00:00'].copy()
df.loc[pd.to_datetime('2013-09-09 23:00:00')] = prev_row
df.loc[pd.to_datetime('2013-09-09 23:30:00')] = prev_row
df.loc[pd.to_datetime('2013-09-10 00:00:00')] = post_row
df.loc[pd.to_datetime('2013-09-10 00:30:00')] = post_row

df = df.sort_index()

我该如何在df_all上执行此操作,以便仅从每个LCLid中用“有效”数据填充丢失的数据?

1 个答案:

答案 0 :(得分:1)

解决方案

输入DataFrame:

                         LCLid  energy(kWh/hh)
day_time                                      
2014-01-01 00:00:00  MAC000006        0.270453
2014-01-01 00:00:00  MAC000007        0.170603
2014-01-01 00:30:00  MAC000006        0.716418
2014-01-01 00:30:00  MAC000007        0.276678
2014-01-01 03:00:00  MAC000006        0.819146
2014-01-01 03:00:00  MAC000007        0.027490
2014-01-01 03:30:00  MAC000006        0.688879
2014-01-01 03:30:00  MAC000007        0.868017

您需要做什么:

full_idx = pd.date_range(start=df.index.min(), end=df.index.max(), freq='30T')
df = (
    df
    .groupby('LCLid', as_index=False)  
    .apply(lambda group: group.reindex(full_idx, method='nearest'))  
    .reset_index(level=0, drop=True)  
    .sort_index()  
)

结果:

                         LCLid  energy(kWh/hh)
2014-01-01 00:00:00  MAC000006        0.270453
2014-01-01 00:00:00  MAC000007        0.170603
2014-01-01 00:30:00  MAC000006        0.716418
2014-01-01 00:30:00  MAC000007        0.276678
2014-01-01 01:00:00  MAC000006        0.716418
2014-01-01 01:00:00  MAC000007        0.276678
2014-01-01 01:30:00  MAC000006        0.716418
2014-01-01 01:30:00  MAC000007        0.276678
2014-01-01 02:00:00  MAC000006        0.819146
2014-01-01 02:00:00  MAC000007        0.027490
2014-01-01 02:30:00  MAC000006        0.819146
2014-01-01 02:30:00  MAC000007        0.027490
2014-01-01 03:00:00  MAC000006        0.819146
2014-01-01 03:00:00  MAC000007        0.027490
2014-01-01 03:30:00  MAC000006        0.688879
2014-01-01 03:30:00  MAC000007        0.868017

说明

首先,我将构建一个与您的数据帧相似的示例数据帧

import numpy as np
import pandas as pd


# Building an example DataFrame that looks like yours
df = pd.DataFrame({
    'day_time': [
           pd.Timestamp(2014, 1, 1, 0, 0),
           pd.Timestamp(2014, 1, 1, 0, 0),
           pd.Timestamp(2014, 1, 1, 0, 30),
           pd.Timestamp(2014, 1, 1, 0, 30),
           pd.Timestamp(2014, 1, 1, 3, 0),
           pd.Timestamp(2014, 1, 1, 3, 0),
           pd.Timestamp(2014, 1, 1, 3, 30),
           pd.Timestamp(2014, 1, 1, 3, 30),
        ],
        'LCLid': [
            'MAC000006',
            'MAC000007',
            'MAC000006',
            'MAC000007',
            'MAC000006',
            'MAC000007',
            'MAC000006',
            'MAC000007',
        ],
        'energy(kWh/hh)': np.random.rand(8)
    },
).set_index('day_time')

结果:

                         LCLid  energy(kWh/hh)
day_time
2014-01-01 00:00:00  MAC000006        0.270453
2014-01-01 00:00:00  MAC000007        0.170603
2014-01-01 00:30:00  MAC000006        0.716418
2014-01-01 00:30:00  MAC000007        0.276678
2014-01-01 03:00:00  MAC000006        0.819146
2014-01-01 03:00:00  MAC000007        0.027490
2014-01-01 03:30:00  MAC000006        0.688879
2014-01-01 03:30:00  MAC000007        0.868017

注意我们如何缺少以下时间戳记:

2014-01-01 01:00:00
2014-01-01 01:30:00
2014-01-02 02:00:00
2014-01-02 02:30:00

df.reindex()

首先要了解的是,df.reindex()允许您填写缺失的索引值,对于缺失的值,默认值为NaN。对于您的情况,您希望提供完整的时间戳范围索引,包括未在起始DataFrame中显示的值。

在这里,我使用pd.date_range()列出了您的最小起始索引值和最大起始索引值之间的所有时间戳,跨度为30分钟。 警告:这种方式意味着,如果您丢失的时间戳记值是在开头或结尾,则您不会将其重新添加!因此,也许您想显式指定startend

full_idx = pd.date_range(start=df.index.min(), end=df.index.max(), freq='30T')

结果:

DatetimeIndex(['2014-01-01 00:00:00', '2014-01-01 00:30:00',
               '2014-01-01 01:00:00', '2014-01-01 01:30:00',
               '2014-01-01 02:00:00', '2014-01-01 02:30:00',
               '2014-01-01 03:00:00', '2014-01-01 03:30:00'],
              dtype='datetime64[ns]', freq='30T')

现在,如果我们使用它重新索引您分组的子DataFrame之一,我们将得到以下信息:

grouped_df = df[df.LCLid == 'MAC000006']
grouped_df.reindex(full_idx)

结果:

                         LCLid  energy(kWh/hh)
2014-01-01 00:00:00  MAC000006        0.270453
2014-01-01 00:30:00  MAC000006        0.716418
2014-01-01 01:00:00        NaN             NaN
2014-01-01 01:30:00        NaN             NaN
2014-01-01 02:00:00        NaN             NaN
2014-01-01 02:30:00        NaN             NaN
2014-01-01 03:00:00  MAC000006        0.819146
2014-01-01 03:30:00  MAC000006        0.688879

您说过要使用最接近的可用周围值来填充缺失值。可以在重新编制索引期间完成此操作,如下所示:

grouped_df.reindex(full_idx, method='nearest')

结果:

                         LCLid  energy(kWh/hh)
2014-01-01 00:00:00  MAC000006        0.270453
2014-01-01 00:30:00  MAC000006        0.716418
2014-01-01 01:00:00  MAC000006        0.716418
2014-01-01 01:30:00  MAC000006        0.716418
2014-01-01 02:00:00  MAC000006        0.819146
2014-01-01 02:30:00  MAC000006        0.819146
2014-01-01 03:00:00  MAC000006        0.819146
2014-01-01 03:30:00  MAC000006        0.688879

使用df.groupby()一次完成所有组

现在,我们希望将此转换应用于DataFrame中的每个组,其中 组由其LCLid定义。

(
    df
    .groupby('LCLid', as_index=False)  # use LCLid as groupby key, but don't add it as a group index
    .apply(lambda group: group.reindex(full_idx, method='nearest'))  # do this for each group
    .reset_index(level=0, drop=True)  # get rid of the automatic index generated during groupby
    .sort_index()  # This is optional, just in case you want timestamps in chronological order
)

结果:

                         LCLid  energy(kWh/hh)
2014-01-01 00:00:00  MAC000006        0.270453
2014-01-01 00:00:00  MAC000007        0.170603
2014-01-01 00:30:00  MAC000006        0.716418
2014-01-01 00:30:00  MAC000007        0.276678
2014-01-01 01:00:00  MAC000006        0.716418
2014-01-01 01:00:00  MAC000007        0.276678
2014-01-01 01:30:00  MAC000006        0.716418
2014-01-01 01:30:00  MAC000007        0.276678
2014-01-01 02:00:00  MAC000006        0.819146
2014-01-01 02:00:00  MAC000007        0.027490
2014-01-01 02:30:00  MAC000006        0.819146
2014-01-01 02:30:00  MAC000007        0.027490
2014-01-01 03:00:00  MAC000006        0.819146
2014-01-01 03:00:00  MAC000007        0.027490
2014-01-01 03:30:00  MAC000006        0.688879
2014-01-01 03:30:00  MAC000007        0.868017

相关文档:

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.date_range.html https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.reindex.html https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.groupby.html https://pandas.pydata.org/pandas-docs/stable/generated/pandas.core.groupby.GroupBy.apply.html https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.reset_index.html https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.sort_index.html