我在弄清楚如何“混合”两个DataFrame时遇到麻烦。我要做的是用在类似的DataFrame df_A
中找到的值填充DataFrame df_B
中的“丢失”值。我尝试了不同版本的join
但显然还没有得出结果。
此外
例如
dict_a = {'ID' : ['id_a', 'id_b', 'id_c', 'id_c'], 'A': ['Hello', 2, 3, 3], 'B': [3, 4, 5, 55], 'C': [11, 'World', 15, 25], 'Date': ['2018-10-23', '2018-10-23', '2018-10-23', '2018-10-24']}
dict_b = {'ID' : ['id_c', 'id_a'], 'A': [np.nan, 31], 'B': [np.nan, 55], 'C': [11, np.nan], 'Date': ['2018-10-23', '2018-10-23']}
df_A = pd.DataFrame(data=dict_a)
df_B = pd.DataFrame(data=dict_b)
>> df_A
>> A B C ID Date
0 Hello 3 11 id_a 2018-10-23
1 2 4 World id_b 2018-10-23
2 3 5 15 id_c 2018-10-23
3 3 55 25 id_c 2018-10-24
>> df_B
>> A B C ID Date
0 NaN NaN 11.0 id_c 2018-10-23
1 31.0 55.0 NaN id_a 2018-10-23
所需的结果应类似于(伪代码)
>> df_blended = df_B.values if df_A.isnan() else df_A.values where df_A.ID = df_B.ID and df_A.Date= df_B.Date
>> df_blended
>> A B C ID Date
0 3 5 11.0 id_c 2018-10-23
1 31.0 55.0 11 id_a 2018-10-23
因此,优先使用df_B,然后使用df_A。希望这是可以理解的!
谢谢
答案 0 :(得分:3)
df = df_B.combine_first(df_A)
print (df)
A B C
0 Hello 32.0 11
1 22 4.0 World
2 31 55.0 15
或numpy.where
,但所有数据都转换为字符串:
df = pd.DataFrame(np.where(df_B.isnull(), df_A, df_B), index=df_A.index, columns=df_A.columns)
print (df)
A B C
0 Hello 32 11
1 22 4 World
2 31 55 15
编辑:首先使用默认的内部联接merge
,然后选择带有rename
的列并使用combine_first
:
df = df_B.merge(df_A, on=['ID','Date'], suffixes=('','_'))
cols = df.columns[df.columns.str.endswith('_')]
df = df[df_B.columns].combine_first(df[cols].rename(columns=lambda x: x.strip('_')))
print (df)
A B C Date ID
0 3.0 5.0 11.0 2018-10-23 id_c
1 31.0 55.0 11.0 2018-10-23 id_a
答案 1 :(得分:0)
尝试此代码:
df_blended =df_B.fillna(df_A)
df_blended
输出
A B C
0 Hello 32 11
1 22 4 World
2 31 55 15