我在postgres
数据库中有一个具有以下表示形式的表:
date name percentile95
2018-09-01 a 0.34
2018-09-02 a 0.41
....
2018-09-29 a 0.74
2018-09-30 a 0.39
2018-10-01 a 0.31
2018-10-02 a 0.24
....
2018-10-30 a 0.64
2018-09-31 a 0.89
我每天都有对应于特定名称'a'的percentile95值。我要计算的是这些每日值中的蒙特利百分数值,所以结果看起来像这样:
date name percentile95
2018-09-01 a {aggreate_percentile from sept}
2018-10-01 a {aggreate_percentile from oct}
在SQL中有什么方法可以做到吗?
编辑:根据此link,无法计算总百分位数。那么,首先,是否有可能从每日百分位数计算出每月百分位数?
答案 0 :(得分:1)
您可以尝试使用date_part
函数来获取年份和月份,然后在子查询中执行SUM
,然后在月份和年份上进行自联接并进行一些计算
CREATE TABLE T(
date timestamp,
name varchar(50),
percentile95 float
);
insert into T values ('2018-09-01','a',0.34);
insert into T values ('2018-09-02','a',0.41);
insert into T values ('2018-09-29','a',0.74);
insert into T values ('2018-09-30','a',0.39);
insert into T values ('2018-10-01','a',0.31);
insert into T values ('2018-10-02','a',0.24);
insert into T values ('2018-10-30','a',0.64);
insert into T values ('2018-09-30','a',0.89);
查询1 :
select
date,
t1.name,
concat((percentile95 * 100/total ),'%') percentile95
from T t1 JOIN (
SELECT
date_part('year', date) y,
date_part('month', date) m,
name,
sum(percentile95) total
FROM T
group by date_part('year', date),
date_part('month', date),
name
) v
ON
v.y = date_part('year', t1.date)
and
v.m = date_part('month', t1.date)
and
v.name = t1.name
Results :
| date | name | percentile95 |
|----------------------|------|----------------------|
| 2018-09-01T00:00:00Z | a | 12.2743682310469318% |
| 2018-09-02T00:00:00Z | a | 14.8014440433213004% |
| 2018-09-29T00:00:00Z | a | 26.7148014440433208% |
| 2018-09-30T00:00:00Z | a | 14.0794223826714795% |
| 2018-09-30T00:00:00Z | a | 32.1299638989169694% |
| 2018-10-02T00:00:00Z | a | 20.1680672268907557% |
| 2018-10-30T00:00:00Z | a | 53.7815126050420176% |
| 2018-10-01T00:00:00Z | a | 26.0504201680672267% |
答案 1 :(得分:0)
使用window functions和date_trunc
:
查询
SELECT
*,
percentile95 / SUM(percentile95) OVER (PARTITION BY date_trunc('month', "date"))
* 100 as percentile_in_month
FROM
t
结果:
date name percentile95 percentile_in_month
2018-09-01 00:00:00 a 0.34 12.2743682310469
2018-09-02 00:00:00 a 0.41 14.8014440433213
2018-09-29 00:00:00 a 0.74 26.7148014440433
2018-09-30 00:00:00 a 0.39 14.0794223826715
2018-09-30 00:00:00 a 0.89 32.129963898917
2018-10-02 00:00:00 a 0.24 20.1680672268908
2018-10-30 00:00:00 a 0.64 53.781512605042
2018-10-01 00:00:00 a 0.31 26.0504201680672
date_trunc
将您的日期归一化为月份。SUM
汇总窗口组中的所有值