从另一个数据框熊猫获取相应的列值

时间:2018-10-23 07:13:28

标签: pandas compare match multiple-columns

下面是我正在比较的两个数据框。当我能够匹配列Usage时,我想在df2的列Item下获得相应的列值。感谢帮助。

df1 = pd.DataFrame({ 'Number':[1.0,3.0,4.0,5.0,8.0,12.0,32.0,58.0,72.0] , 'Item': ['Phone', 'Watch', 'Pen', 'Pencil', 'Pencil', 'toolkit', 'box', 'fork', 'toy']})
df2 = pd.DataFrame({'Number':[3.0, 4.0, 8.0, 12.0, 15.0, 32.0, 54.0, 58.0, 72.0], 'Item':['Watch', 'Pen', 'Pencil', 'Eraser', 'bottle', 'box', 'toolkit', 'fork', 'Phone'], 'Usage':['Time', 'Writing', 'Writing', 'Cleaning', 'Water', 'storage', 'Utility', 'Eat', 'Communication']})

df1
   Number     Item
0     1.0    Phone
1     3.0    Watch 
2     4.0      Pen
3     5.0   Pencil
4     8.0   Pencil   
5    12.0  toolkit
6    32.0      box
7    58.0     fork
8    72.0      toy

df2
   Number     Item          Usage
0     3.0    Watch           Time
1     4.0      Pen        Writing
2     8.0   Pencil        Writing
3    12.0   Eraser       Cleaning
4    15.0   bottle          Water
5    32.0      box        storage
6    54.0  toolkit        Utility
7    58.0     fork            Eat
8    72.0    Phone  Communication

用于匹配的代码如下。即使只有数字匹配,它也会显示“ MatchedBoth”。这需要解决。

import numpy as np
df3 = df1.copy()
df3['Matching'] = np.nan
df3.loc[(df3.Number.isin(df2.Number)) & (df3.Item.isin(df2.Item)), 'Matching'] = 'MatchedBoth'
df3.loc[(df3.Number.isin(df2.Number)) & (~df3.Item.isin(df2.Item)),'Matching'] = 'Matched Number Only'
df3.Matching.fillna('No Match', inplace=True)

在同一代码中,有可能嵌入一个返回值,该返回值可以从Usage获取df2列值,每个匹配行对应。在某些情况下,可能有多个行可以匹配,因此我们可能需要将相应的Usage列值放入列表或最终输出中类似的内容。

注意:在我的实际数据框中,我除此以外还有几列,因此,如果使用合并,则会导致巨大的数据框。我只想创建一个新列,并在df2的Usage列中找到对应的匹配值列表。

输出应如下所示。

df3
   Number     Item             Matching    Usage
0     1.0    Phone             No Match      NaN
1     3.0    Watch          MatchedBoth     Time
2     4.0      Pen          MatchedBoth  Writing
3     5.0   Pencil             No Match      NaN
4     8.0   Pencil          MatchedBoth  Writing 
5    12.0  toolkit  Matched Number Only  Utility
6    32.0      box          MatchedBoth  storage
7    58.0     fork          MatchedBoth      Eat
8    72.0      toy  Matched Number Only     Play

1 个答案:

答案 0 :(得分:0)

您可以尝试这样的事情:

df3 = df1.merge(df2, on='Number', how='left')
df3['Matching'] = np.where(df3.Productdetailed == df3.Item, 'Matched', 'No Match')
df3.drop('Productdetailed', axis=1, inplace=True)

这将返回您在问题中指示的输出。

澄清后进行编辑:

def find_match(row):
  if (row.Number in df2.Number.values) & (row.Item in df2.Item.values):
      return "MatchedBoth"
  elif ((row.Number in df2.Number.values) & ~(row.Item in df2.Item.values)):
      return "Matched Number Only"
  else:
      return "No Match"

df3['Matching'] = df3.apply(find_match, axis=1)
df3['Usage'] = df3.Item.map(df2.set_index('Item').Usage)