我有一个用python用OpenCV编写的程序。我想添加一个功能,即使用遮罩对大津进行阈值处理。因此,我从here获得了用c ++编写的代码。我试图将其转换为python,但速度太慢(由于python)。最后,我下定决心将c ++与python一起使用。我尝试嵌入,并找到pyopencv_to()函数。但是,由于 PyArray_Check(),我无法使用它。当程序进入此功能时,立即死亡。它没有给出任何错误信息。我猜可能是细分错误。许多堆栈溢出的答案都说“使用import_array()”。但这对我不起作用。
这是我的代码。
convert.cpp
#include <Python.h>
#include "numpy/ndarrayobject.h"
#include "opencv2/core/core.hpp"
#include "convert.hpp"
static PyObject* opencv_error = 0;
static int failmsg(const char *fmt, ...)
{
char str[1000];
va_list ap;
va_start(ap, fmt);
vsnprintf(str, sizeof(str), fmt, ap);
va_end(ap);
PyErr_SetString(PyExc_TypeError, str);
return 0;
}
class PyAllowThreads
{
public:
PyAllowThreads() : _state(PyEval_SaveThread()) {}
~PyAllowThreads()
{
PyEval_RestoreThread(_state);
}
private:
PyThreadState* _state;
};
class PyEnsureGIL
{
public:
PyEnsureGIL() : _state(PyGILState_Ensure()) {}
~PyEnsureGIL()
{
PyGILState_Release(_state);
}
private:
PyGILState_STATE _state;
};
#define ERRWRAP2(expr) \
try \
{ \
PyAllowThreads allowThreads; \
expr; \
} \
catch (const cv::Exception &e) \
{ \
PyErr_SetString(opencv_error, e.what()); \
return 0; \
}
using namespace cv;
static PyObject* failmsgp(const char *fmt, ...)
{
char str[1000];
va_list ap;
va_start(ap, fmt);
vsnprintf(str, sizeof(str), fmt, ap);
va_end(ap);
PyErr_SetString(PyExc_TypeError, str);
return 0;
}
static size_t REFCOUNT_OFFSET = (size_t)&(((PyObject*)0)->ob_refcnt) +
(0x12345678 != *(const size_t*)"\x78\x56\x34\x12\0\0\0\0\0")*sizeof(int);
static inline PyObject* pyObjectFromRefcount(const int* refcount)
{
return (PyObject*)((size_t)refcount - REFCOUNT_OFFSET);
}
static inline int* refcountFromPyObject(const PyObject* obj)
{
return (int*)((size_t)obj + REFCOUNT_OFFSET);
}
class NumpyAllocator : public MatAllocator
{
public:
NumpyAllocator() {}
~NumpyAllocator() {}
void allocate(int dims, const int* sizes, int type, int*& refcount,
uchar*& datastart, uchar*& data, size_t* step)
{
PyEnsureGIL gil;
int depth = CV_MAT_DEPTH(type);
int cn = CV_MAT_CN(type);
const int f = (int)(sizeof(size_t)/8);
int typenum = depth == CV_8U ? NPY_UBYTE : depth == CV_8S ? NPY_BYTE :
depth == CV_16U ? NPY_USHORT : depth == CV_16S ? NPY_SHORT :
depth == CV_32S ? NPY_INT : depth == CV_32F ? NPY_FLOAT :
depth == CV_64F ? NPY_DOUBLE : f*NPY_ULONGLONG + (f^1)*NPY_UINT;
int i;
npy_intp _sizes[CV_MAX_DIM+1];
for( i = 0; i < dims; i++ )
_sizes[i] = sizes[i];
if( cn > 1 )
{
/*if( _sizes[dims-1] == 1 )
_sizes[dims-1] = cn;
else*/
_sizes[dims++] = cn;
}
PyObject* o = PyArray_SimpleNew(dims, _sizes, typenum);
if(!o)
CV_Error_(CV_StsError, ("The numpy array of typenum=%d, ndims=%d can not be created", typenum, dims));
refcount = refcountFromPyObject(o);
npy_intp* _strides = PyArray_STRIDES(o);
for( i = 0; i < dims - (cn > 1); i++ )
step[i] = (size_t)_strides[i];
datastart = data = (uchar*)PyArray_DATA(o);
}
void deallocate(int* refcount, uchar*, uchar*)
{
PyEnsureGIL gil;
if( !refcount )
return;
PyObject* o = pyObjectFromRefcount(refcount);
Py_INCREF(o);
Py_DECREF(o);
}
};
NumpyAllocator g_numpyAllocator;
enum { ARG_NONE = 0, ARG_MAT = 1, ARG_SCALAR = 2 };
int init_numpy() {
import_array();
return 0;
}
const static int numpy_initialized = init_numpy();
int pyopencv_to(const PyObject* o, Mat& m, const char* name, bool allowND)
{
if(!o || o == Py_None)
{
if( !m.data )
m.allocator = &g_numpyAllocator;
return true;
}
if( !PyArray_Check(o) ) // this line makes error without message
{
failmsg("%s is not a numpy array", name);
return false;
}
// NPY_LONG (64 bit) is converted to CV_32S (32 bit)
int typenum = PyArray_TYPE(o);
int type = typenum == NPY_UBYTE ? CV_8U : typenum == NPY_BYTE ? CV_8S :
typenum == NPY_USHORT ? CV_16U : typenum == NPY_SHORT ? CV_16S :
typenum == NPY_INT || typenum == NPY_LONG ? CV_32S :
typenum == NPY_FLOAT ? CV_32F :
typenum == NPY_DOUBLE ? CV_64F : -1;
if( type < 0 )
{
failmsg("%s data type = %d is not supported", name, typenum);
return false;
}
int ndims = PyArray_NDIM(o);
if(ndims >= CV_MAX_DIM)
{
failmsg("%s dimensionality (=%d) is too high", name, ndims);
return false;
}
int size[CV_MAX_DIM+1];
size_t step[CV_MAX_DIM+1], elemsize = CV_ELEM_SIZE1(type);
const npy_intp* _sizes = PyArray_DIMS(o);
const npy_intp* _strides = PyArray_STRIDES(o);
bool transposed = false;
for(int i = 0; i < ndims; i++)
{
size[i] = (int)_sizes[i];
step[i] = (size_t)_strides[i];
}
if( ndims == 0 || step[ndims-1] > elemsize ) {
size[ndims] = 1;
step[ndims] = elemsize;
ndims++;
}
if( ndims >= 2 && step[0] < step[1] )
{
std::swap(size[0], size[1]);
std::swap(step[0], step[1]);
transposed = true;
}
if( ndims == 3 && size[2] <= CV_CN_MAX && step[1] == elemsize*size[2] )
{
ndims--;
type |= CV_MAKETYPE(0, size[2]);
}
if( ndims > 2 && !allowND )
{
failmsg("%s has more than 2 dimensions", name);
return false;
}
m = cv::Mat(ndims, size, type, PyArray_DATA(o), step);
if( m.data )
{
m.u->refcount = *refcountFromPyObject(o);
m.addref(); // protect the original numpy array from deallocation
// (since Mat destructor will decrement the reference counter)
};
m.allocator = &g_numpyAllocator;
if( transposed )
{
cv::Mat tmp;
tmp.allocator = &g_numpyAllocator;
transpose(m, tmp);
m = tmp;
}
return true;
}
PyObject* pyopencv_from(const Mat& m)
{
if( !m.data )
Py_RETURN_NONE;
Mat temp, *p = (Mat*)&m;
if(!(p->u->refcount) || p->allocator != &g_numpyAllocator)
{
temp.allocator = &g_numpyAllocator;
ERRWRAP2(m.copyTo(temp));
p = &temp;
}
p->addref();
return pyObjectFromRefcount(&(p->u->refcount));
}
threshold.cpp
#include <Python.h>
#include "opencv2/opencv.hpp"
#include "convert.hpp"
#include "numpy/ndarrayobject.h"
using namespace std;
using namespace cv;
double otsu_8u_with_mask(const Mat1b src, const Mat1b& mask)
{
const int N = 256;
int M = 0;
int i, j, h[N] = { 0 };
for (i = 0; i < src.rows; i++)
{
const uchar* psrc = src.ptr(i);
const uchar* pmask = mask.ptr(i);
for (j = 0; j < src.cols; j++)
{
if (pmask[j])
{
h[psrc[j]]++;
++M;
}
}
}
double mu = 0, scale = 1. / (M);
for (i = 0; i < N; i++)
mu += i * (double)h[i];
mu *= scale;
double mu1 = 0, q1 = 0;
double max_sigma = 0, max_val = 0;
for (i = 0; i < N; i++)
{
double p_i, q2, mu2, sigma;
p_i = h[i] * scale;
mu1 *= q1;
q1 += p_i;
q2 = 1. - q1;
if (std::min(q1, q2) < FLT_EPSILON || std::max(q1, q2) > 1. - FLT_EPSILON)
continue;
mu1 = (mu1 + i * p_i) / q1;
mu2 = (mu - q1 * mu1) / q2;
sigma = q1 * q2*(mu1 - mu2)*(mu1 - mu2);
if (sigma > max_sigma)
{
max_sigma = sigma;
max_val = i;
}
}
return max_val;
}
static PyObject * otsu_with_mask(PyObject *self, PyObject * args) {
PyObject pySrc, pyMask;
Mat src, mask;
import_array();
if (!PyArg_ParseTuple(args, "OO", &pySrc, &pyMask))
return NULL;
pyopencv_to(&pySrc, src, "source");
pyopencv_to(&pyMask, mask, "mask");
double thresh = otsu_8u_with_mask(src, mask);
return Py_BuildValue("i", thresh);
}
static PyMethodDef ThresholdMethods[] = {
{"otsu_with_mask", otsu_with_mask, METH_VARARGS, "Otsu thresholding with mask."},
{ NULL, NULL, 0, NULL}
};
static struct PyModuleDef thresholdModule = {
PyModuleDef_HEAD_INIT,
"customThreshold",
"Thresholding module.",
-1,
ThresholdMethods
};
PyMODINIT_FUNC PyInit_customThreshold(void) {
return PyModule_Create(&thresholdModule);
}
convert.hpp
#ifndef __CONVERT_HPP__
#define __CONVERT_HPP__
#include <Python.h>
#include "opencv2/opencv.hpp"
using namespace cv;
int pyopencv_to(const PyObject* o, Mat& m, const char* name = "<unknown>", bool allowND=true);
PyObject* pyopencv_from(const Mat& m);
#endif
答案 0 :(得分:0)
您为什么选择结合使用C ++和Python包装来完成此简单任务?我认为仅使用Python即可轻松实现相同的结果...?
我假设您想在OpenCV中使用自适应阈值方法。
首先,您可以计算输入灰度图像的自适应阈值。该值可以通过以下函数计算:
def compute_otsu_value(im_gray):
hist = cv2.calcHist([im_gray], [0], None, [256], [0, 256])
hist_norm = hist.ravel() / hist.max()
cum_sum_mat = hist_norm.cumsum()
fn_min = np.inf
thresh = -1
for i in xrange(1, 256):
p1, p2 = np.hsplit(hist_norm, [i])
q1, q2 = cum_sum_mat[i], cum_sum_mat[255] - cum_sum_mat[i]
if q1 == 0 or q2 == 0:
continue
b1, b2 = np.hsplit(np.arange(256), [i])
m1, m2 = np.sum(p1 * b1) / q1, np.sum(p2 * b2) / q2
v1, v2 = np.sum(((b1-m1)**2)*p1)/q1, np.sum(((b2-m2)**2)*p2)/q2
fn = v1 * q1 + v2 * q2
if fn < fn_min:
fn_min = fn
thresh = i
return thresh
最后,在main()函数中,可以将输入图像加载为灰色图像,并相应地获取阈值图像。
im_gray = cv2.imread("input.png", 0)
otsu_value = comput_otsu_values(im_gray)
im_th = cv2.threshold(im_gray, otsu_value, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)