我有一个问题,我有多个线程在不断写入,例如并发HashMap。现在,我想定期(通过TimerJob)处理该哈希图中的所有内容。其他线程仍可以继续对其进行写操作(该新数据将在下次Timejob启动时进行处理)。
我想知道什么是实现这一目标的最佳方法。我正在阅读,这个问题似乎很像Triple Buffer。我对此并不十分乐观。
有什么想法吗?
编辑:我想在处理完地图后将其从地图中删除,以免最终重新处理该数据
编辑:我不必一定要将数据写入HashMap / Set。我只需要将其放入一个集合中,即可在其他线程仍在对其进行写入的同时定期处理该集合。
答案 0 :(得分:1)
我不确定您是否需要地图中的所有数据,或者您不需要在地图中由计时器作业处理的数据。
如果您只需要计时器工作之类的快照,则可以像这样用新地图来切换/替换地图。
private volatile ConcurentHashMap map ;
public void processByTimerJob(){
ConcurentHashMap oldMap = this.map;
this.map = new ConcurrentHashMap; // everyting new will be stored in new map
oldMap.forEach(..... //process old map via iteration or whatever you want
}
答案 1 :(得分:0)
我会使用double buffering
和一个读/写锁。
双重缓冲通过允许处理换出的图来减少保留。
使用读/写锁定使我可以确定在交换之后,仍然没有人在向地图写入数据。
class DoubleBufferedMap<K, V> extends AbstractMap<K, V> implements Map<K, V> {
// Used whenever I want to create a new map.
private final Supplier<Map<K, V>> mapSupplier;
// The underlying map.
private volatile Map<K, V> map;
// My lock - for ensuring no-one is writing.
ReadWriteLock readWriteLock = new ReentrantReadWriteLock();
final Lock readLock = readWriteLock.readLock();
final Lock writeLock = readWriteLock.writeLock();
public DoubleBufferedMap(Supplier<Map<K, V>> mapSupplier) {
this.mapSupplier = mapSupplier;
this.map = mapSupplier.get();
}
/**
* Swaps out the current map with a new one.
*
* @return the old map ready for processing, guaranteed to have no pending writes.
*/
public Map<K,V> swap() {
// Grab the existing map.
Map<K,V> oldMap = map;
// Replace it.
map = mapSupplier.get();
// Take a write lock to wait for all `put`s to complete.
try {
writeLock.lock();
} finally {
writeLock.unlock();
}
return oldMap;
}
// Put methods must take a read lock (yeah I know it's weird)
@Nullable
@Override
public V put(K key, V value) {
try{
// Take a read-lock so they know when I'm finished.
readLock.lock();
return map.put(key, value);
} finally {
readLock.unlock();
}
}
@Override
public void putAll(@NotNull Map<? extends K, ? extends V> m) {
try{
// Take a read-lock so they know when I'm finished.
readLock.lock();
map.putAll(m);
} finally {
readLock.unlock();
}
}
@Nullable
@Override
public V putIfAbsent(K key, V value) {
try{
// Take a read-lock so they know when I'm finished.
readLock.lock();
return map.putIfAbsent(key, value);
} finally {
readLock.unlock();
}
}
// All other methods are simply delegated - but you may wish to disallow some of them (like `entrySet` which would expose the map to modification without locks).
@Override
public Set<Entry<K, V>> entrySet() {
return map.entrySet();
}
@Override
public boolean equals(Object o) {
return map.equals(o);
}
@Override
public int hashCode() {
return map.hashCode();
}
// ... The rest of the delegators (left to the student)