如何在张量流中向张量添加动态尺寸?

时间:2018-10-22 14:12:56

标签: python tensorflow

我有一个input_node,形状为(None, 80, 3),意思是(sample_length, resolution, channel)。但是,该张量缺少批次的第四个维度。有没有办法将input_node重塑为(None, None, 80, 3)


我无法使用tf.expand_dims处理批处理:

wave_input = tf.placeholder(dtype=tf.float32, shape=[None], name='wave_input')
encoded_dict = problem.preprocess_example({'waveforms': wave_input, 'targets': [0]}, mode, hparams)

# This is where a dynamic shape would be required
encoded_dict['inputs'] = tf.expand_dims(encoded_dict['inputs'], 0)
encoded_dict['targets'] = tf.expand_dims(encoded_dict['targets'], 0)

# Get input/output nodes

inferred = model.infer(encoded_dict)

tf.identity(encoded_dict['inputs'], name=input_name)
tf.identity(inferred['outputs'], name=output_name)

0 个答案:

没有答案