张量流计算tf.nn.conv2d

时间:2018-10-22 05:49:08

标签: python tensorflow convolution

我已经在Excel中手动计算了3x3图像和两个2x2滤镜之间的卷积:

enter image description here

我想使用张量流tf.nn.conv2d:

重现相同的结果
x_raw = np.array([
    [2,5,3],
    [3,4,2],
    [4,1,1]
])

f_raw = np.array(
[[
    [2,1],
    [3,4]
],[
    [4,1],
    [1,2]   
]])

f = tf.constant(f_raw, dtype=tf.float32)
x = tf.constant(x_raw, dtype=tf.float32)

filter = tf.reshape(f, [2, 2, 1, 2])
image  = tf.reshape(x, [1, 3, 3, 1])

tf.nn.conv2d(image, filter, [1, 1, 1, 1], "VALID").eval()

但是我从tensorflow得到的输出关闭:

  

array([[[[[35.,33。],[37.,25。]],[[35.25。],[19.,15。]]],dtype = float32)< / p>

我做错了什么?

1 个答案:

答案 0 :(得分:2)

要获得与excel示例相同的结果,您需要进行以下更改:

  1. 创建两个单独的权重
  2. 分别计算每个权重的卷积

代码示例:

x_raw = np.array([
    [2,5,3],
    [3,4,2],
    [4,1,1]
])
#created two seperate weights 
weight1 = np.array(
[[
    [2,1],
    [3,4]
]])

weight2 = np.array(
[[
    [4,1],
    [1,2]
]]
)
weight1 = tf.constant(weight1, dtype=tf.float32)
weight2 = tf.constant(weight2, dtype=tf.float32)
x = tf.constant(x_raw, dtype=tf.float32)

#change out_channels to 1 
filter1 = tf.reshape(weight1, [2, 2, 1, 1])
filter2 = tf.reshape(weight2, [2, 2, 1, 1])
image = tf.reshape(x, [1, 3, 3, 1])

with tf.Session() as sess:
  print(tf.nn.conv2d(image, filter1, [1, 1, 1, 1], "VALID").eval())
  print(tf.nn.conv2d(image, filter2, [1, 1, 1, 1], "VALID").eval())