Python:将列表与TF-IDF一起使用

时间:2018-10-20 22:26:49

标签: python pandas text tf-idf tfidfvectorizer

我有以下一段代码,当前将“令牌”中的所有单词与“ df”中的每个文档进行比较。有什么办法可以将预定义的单词列表与文档(而不是“令牌”)进行比较。

from sklearn.feature_extraction.text import TfidfVectorizer
tfidf_vectorizer = TfidfVectorizer(norm=None)  

list_contents =[]
for index, row in df.iterrows():
    list_contents.append(' '.join(row.Tokens))

# list_contents = df.Content.values

tfidf_matrix = tfidf_vectorizer.fit_transform(list_contents)
df_tfidf = pd.DataFrame(tfidf_matrix.toarray(),columns= [tfidf_vectorizer.get_feature_names()])
df_tfidf.head(10)

感谢您的帮助。谢谢!

1 个答案:

答案 0 :(得分:0)

不确定我是否理解正确,但是如果要让Vectorizer考虑固定的单词列表,则可以使用vocabulary参数。

my_words = ["foo","bar","baz"]

# set the vocabulary parameter with your list of words
tfidf_vectorizer = TfidfVectorizer(
    norm=None,
    vocabulary=my_words)  

list_contents =[]
for index, row in df.iterrows():
    list_contents.append(' '.join(row.Tokens))

# this matrix will have only 3 columns because we have forced
# the vectorizer to use just the words foo bar and baz
# so it'll ignore all other words in the documents.
tfidf_matrix = tfidf_vectorizer.fit_transform(list_contents)