删除4D阵列中存在的3D阵列行

时间:2018-10-20 13:13:06

标签: python arrays performance numpy multidimensional-array

我有一个3D numpy数组,其中包含空间中点的坐标。 通过矩阵运算来变换该数组,我得到了4D numpy数组,这样在矩阵变换(包括恒等运算)之后,对于a的每一行,在4D数组中都有一个对应的3D块。因此,两个数组的零轴都相等。

现在,我需要查找具有索引[i]的任何行是否存在于第j行(如果存在)中,然后删除i或j。(无论其i或j都无关紧要)。我也=! j,因为我们有一个身份运算。举例说明:

>>> a  # 3d array
array([[[0, 1, 2],
        [0, 0, 2]],

       [[2, 0, 0],
        [0, 0, 2]],

       [[0, 2, 1],
        [0, 0, 0]]])

>>> b  #4d array after applying transformation to 3d array(a)
array([[[[0, 1, 2],
         [0, 0, 2]],

        [[0, 0, 0],
         [2, 1, 1]],

        [[0, 2, 1],
         [0, 0, 1]]],


       [[[2, 0, 0],
         [0, 0, 2]],

        [[0, 2, 2],
         [2, 0, 0]],

        [[2, 2, 2],
         [1, 0, 2]]],


       [[[0, 2, 1],
         [0, 0, 0]],

        [[2, 0, 0],
         [0, 0, 2]],

        [[2, 0, 1],
         [2, 2, 0]]]])

现在,如果仔细观察,a与b [:,0]相同。原因是身份转换。因此我们当然不希望将a [0]与b [0]进行比较。 a [1] = b [2,0],因此代码应删除a [1]或a [2],但不能两者都删除。 最终结果应该是:

>>> output
array([[[0, 1, 2],
        [0, 0, 2]],

       [[2, 0, 0],
        [0, 0, 2]]])

OR

>>> output
array([[[0, 1, 2],
        [0, 0, 2]],

       [[0, 2, 1],
        [0, 0, 0]]])

第一个解决方案。 溶胶到目前为止,我是这个,

def giveuniquestructures_fast(marray, symarray, noofF):
    """ Removes configurations ith (2d block of marray) which are found in symmarray at jth position such that i != j """

# noofF is the number of points in each configuration(i.e. noofF = len(marray[0])
# The shape of the two arrays is, marray 3D-array(positions, nofF, 3),
# symarray 4D-array(positions, symmetryopration, noofF, 3)


print("Sorting the input arrays:\\n")

symarray = sort4D(symarray)    # sorting the symarray(4D-array)

marray = sorter3d_v1(marray)    # sorting the marray(3D-array)
print("sorting is complete now comparison is starting: ")

delindex = np.empty(0, dtype=int) 
delcheck = False
print("The total number of configurations are", len(marray))

 # flattening the array to reduce one dimension

symarray = symarray.reshape(marray.shape[0],-1,3*noofF) 
marray = marray.reshape(-1, 3*noofF)
bol = np.ones(symarray.shape[0], dtype=bool)
     # boolean array for masking the symarray along 0-axis

for i in range(len(marray)):

        print("checking %dth configuration for symmetrical equivalencey \\n" % i)
        bol[i] = False
        bol1 = marray[i] == symarray[bol]
        bol1 = bol1.all(-1)
        bol[i] = True # setting it back to true for next run

        if bol1.any() :

            delindex = np.append(delindex, i)
            delcheck = True

if delcheck:

    marray = np.delete(marray, delindex, 0)

print("Search for UNique configurations are ending now :\\n")
return marray.reshape(-1, noofF,3)  # converting back to input shape

---------------以防万一您想查看排序功能------------

def sorter3d_v1(a):

    """sorts the 1D blocks within 2D blocks of array in order of first column, 2nd column, 3rd column"""

    print("Input array is \\n", a)
    print("shape of input array is ",a.shape)
    ind = np.lexsort((a[:,:,2], a[:,:,1], a[:,:,0]), axis=1)  # getting the sorter index

    s = np.arange(len(a))[:,np.newaxis] # getting the evenly distributed number array  based on length of ind to select the sorted

    a = a[s,ind,:]

    print("sorted array is \\n")
    print(a)

    return  a

您可能已经猜到此功能的问题是效率。如果输入数组的行数甚至是百万分之一,那么运行循环将花费大量时间。瓶颈实际上在于使用np.all()函数的语句,即

bol1 = bol1.all(-1)

任何改进方面的帮助将不胜感激。我希望它不会造成混淆。

第二个解决方案 我能够使用矢量化进行编码的第二个解决方案:

def giveuniquestructures_fast_v1(marray, symarray, noofF):
    """The new implementation of the previous function (uniquestructures_fast) """

    # The shape of the two arrays is, marray 3D-array(positions, nofF, 3),
    # symarray 4D-array(positions, symmetryopration, noofF, 3)

    try:

        if (len(marray) != len(symarray)):
            raise Exception("The length of the two arrays doesn't match")

    except Exception:
        raise

    print("Sorting the input arrays:\\n")

    symarray = sort4D(symarray)  # sorting the barray(4D-array)

    marray = sorter3d_v1(marray)  # sorting the marray(3D-array)
    print("sorting is complete now comparison is starting: ")
    print("The total number of configurations is", len(marray))

    # flattening the array to reduce one dimension

    symarray = symarray.reshape(symarray.shape[0], -1, 3 * noofF)
    marray = marray.reshape(-1, 3 * noofF)

    # Batch operation may give Memory error in case array is big!!! 

    bol = marray[:,np.newaxis,np.newaxis,:] == symarray  # 4d array
    maskindices = np.arange(len(bol)) # to falsify the identity matrix operaterated values
    bol[maskindices[:,np.newaxis], maskindices[:,np.newaxis]] = False  # setting the identity rows value to False
    delindices   = np.where(bol.all(-1)) # The first and second tuple entries are relevant for next step

    # Need to check for swapping indices as possibility of removing both equal arrays may happen

    # removing the configurations which are symmetrically equivalent
    marray = np.delete(marray, np.unique(delindices,axis=-1)[0], 0)

    # reverting the dimensions back to the input array dimensions

    marray = marray.reshape(-1, noofF, 3)
    print("Search for UNique configurations are ending now :\\n")
    return marray

第二解决方案的问题。 当数组变大到足以引发内存错误时,矢量化将无济于事。有什么想法吗?!

0 个答案:

没有答案