我有一个销售文件,其中包含商店名称,位置,销售价格,产品名称等信息。文件格式如下所示,
2012-01-01 09:00 San Jose Men's Clothing 214.05 Amex
2012-01-01 09:00 Fort Worth Women's Clothing 153.57 Visa
2012-01-01 09:00 San Diego Music 66.08 Cash
2012-01-01 09:00 Pittsburgh Pet Supplies 493.51 Discover
2012-01-01 09:00 Omaha Children's Clothing 235.63 MasterCard
2012-01-01 09:00 Stockton Men's Clothing 247.18 MasterCard
我想写一份Map-reduce作业来查找我们所有商店中按产品类别划分的销售明细。我的代码(包括Mapper和reducer)在下面提供,
public final class P1Q1 {
public static final class P1Q1Map extends Mapper<LongWritable, Text, Text, DoubleWritable> {
private final Text word = new Text();
public final void map(final LongWritable key, final Text value, final Context context)
throws IOException, InterruptedException {
final String line = value.toString();
final String[] data = line.trim().split("\t");
if (data.length == 6) {
final String product = data[3];
final double sales = Double.parseDouble(data[4]);
word.set(product);
context.write(word, new DoubleWritable(sales));
}
}
}
public static final class P1Q1Reduce extends Reducer<Text, DoubleWritable, Text, DoubleWritable> {
public final void reduce(final Text key, final Iterable<DoubleWritable> values, final Context context)
throws IOException, InterruptedException {
double sum = 0.0;
for (final DoubleWritable val : values) {
sum += val.get();
}
context.write(key, new DoubleWritable(sum));
}
}
public final static void main(final String[] args) throws Exception {
final Configuration conf = new Configuration();
final Job job = new Job(conf, "P1Q1");
job.setJarByClass(P1Q1.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(DoubleWritable.class);
job.setMapperClass(P1Q1Map.class);
job.setCombinerClass(P1Q1Reduce.class);
job.setReducerClass(P1Q1Reduce.class);
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.waitForCompletion(true);
}
}
代码提供的答案不正确,并且与Udacity结果不匹配。
任何人都知道这是否是正确的想法以及如何做到这一点吗?
注意
我在输出文件中得到了完全错误的结果,
Baby 5.749180844000035E7
Books 5.745075790999787E7
CDs 5.741075304000156E7
Cameras 5.7299046639999785E7
Children's Clothing 5.762482094000117E7
Computers 5.7315406319999576E7
Consumer Electronics 5.745237412999948E7
Crafts 5.7418154499999225E7
DVDs 5.764921213999939E7
Garden 5.7539833110000335E7
Health and Beauty 5.748158956000019E7
Men's Clothing 5.76212790400011E7
Music 5.749548970000038E7
Pet Supplies 5.71972502400004E7
Sporting Goods 5.7599085889999546E7
Toys 5.746347710999843E7
Video Games 5.7513165580000155E7
Women's Clothing 5.74344489699993E7
我认为,如果注释掉组合器,那就可以了。我做到了,并且没有改变结果。
job.setCombinerClass(P1Q1Reduce.class);
答案 0 :(得分:1)
在大多数情况下,我想说您的代码看起来不错,并且Combiner只是一种优化,因此排除它应该产生与包含它相同的输出。
我写了自己的MR,并得到了给定输入的输出
Children's Clothing 235.63
Men's Clothing 461.23
Music 66.08
Pet Supplies 493.51
Women's Clothing 153.57
很明显,如果您有成千上万的商店,那么您将获得数百万个货币单位,如输出所示。
代码
@Override
public int run(String[] args) throws Exception {
Configuration conf = getConf();
Job job = Job.getInstance(conf, APP_NAME);
job.setJarByClass(StoreSumRunner.class);
job.setMapperClass(TokenizerMapper.class);
job.setReducerClass(CurrencyReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(DoubleWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
return job.waitForCompletion(true) ? 0 : 1;
}
static class TokenizerMapper extends Mapper<LongWritable, Text, Text, DoubleWritable> {
private final Text key = new Text();
private final DoubleWritable sales = new DoubleWritable();
@Override
protected void map(LongWritable offset, Text value, Context context) throws IOException, InterruptedException {
final String line = value.toString();
final String[] data = line.trim().split("\\s\\s+");
if (data.length < 6) {
System.err.printf("mapper: not enough records for %s%n", Arrays.toString(data));
return;
}
key.set(data[3]);
try {
sales.set(Double.parseDouble(data[4]));
context.write(key, sales);
} catch (NumberFormatException ex) {
System.err.printf("mapper: invalid value format %s%n", data[4]);
}
}
}
static class CurrencyReducer extends Reducer<Text, DoubleWritable, Text, Text> {
private final Text output = new Text();
private final DecimalFormat df = new DecimalFormat("#.00");
@Override
protected void reduce(Text date, Iterable<DoubleWritable> values, Context context) throws IOException, InterruptedException {
double sum = 0;
for (DoubleWritable value : values) {
sum += value.get();
}
output.set(df.format(sum));
context.write(date, output);
}
}