我是pyspark的新手,无需多说。 我有一个PySpark表,像这样:
+---+-------+-----+-------+
| id| ranges|score| uom|
+---+-------+-----+-------+
| 1| low| 20|percent|
| 1|verylow| 10|percent|
| 1| high| 70| bytes|
| 1| medium| 40|percent|
| 1| high| 60|percent|
| 1|verylow| 10|percent|
| 1| high| 70|percent|
+---+-------+-----+-------+
我想计算给定百分比为 0.95 的分数列的百分位值,我希望它也应返回相应的范围值。我尝试运行此查询:
results = spark.sql('select percentile_approx(score,0.95) as score, first(ranges) from subset GROUP BY id')
我得到这样的结果:
+-----+--------------------+
|score|first(ranges, false)|
+-----+--------------------+
| 70| low|
+-----+--------------------+
它向我返回范围的第一个值,该值不正确,应该为“高”。 如果我从查询中删除第一个(范围),则会出现错误:
> pyspark.sql.utils.AnalysisException: u"expression 'subset.`ranges`' is
> neither present in the group by, nor is it an aggregate function. Add
> to group by or wrap in first() (or first_value) if you don't care
> which value you get.;;\nAggregate [id#0L],
> [percentile_approx(score#2L, cast(0.95 as double), 10000, 0, 0) AS
> score#353L, ranges#1]\n+- SubqueryAlias subset\n +- LogicalRDD
> [id#0L, ranges#1, score#2L, uom#3], false\n
答案 0 :(得分:1)
这是因为您仅按ID分组。因此,通过使用第一个函数,您可以有效地从ranges列中选择一个随机值。
一种解决方案是创建第二个数据框,其中包含分数到范围的映射,然后最后将其重新连接到结果df中。
>>> df.registerTempTable("df") # Register first before selecting from 'df'
>>> map = spark.sql('select ranges, score from df')
>>> results = spark.sql('select percentile_approx(score,0.95) as score from subset GROUP BY id')
>>> results .registerTempTable("results ")
>>> final_result = spark.sql('select r.score, m.ranges from results as r join map as m on r.score = m.score')