带有正负值的python中的堆积面积图

时间:2018-10-18 11:27:35

标签: python pandas matplotlib stacked-area-chart

我想做一个堆积面积图,其中一些组为正,因此将出现在x轴上方(堆叠),而另一些为负,因此将出现在x轴下方。在我执行stackplot的那一刻,它只是添加了实际值,因此带有负值的组不会出现在图中,但是所有其他区域都向下移动。基本上,我想合并两个面积图,一个用于x轴上方的正基,另一个用于x轴下方的负基。

谢谢

2 个答案:

答案 0 :(得分:1)

可能不完全是您想要的,但是我设法用负值和正值绘制了面积图。以下代码可在Python 3.7 / Windows 10 / Spyder IDE上运行:

import matplotlib.pyplot as plt

x_axis = [1,2,3,4,5,6,7,8,9,10]
cheap = [-5,-4,-6,-8,-4,-2,-4,-8,-7,-3]
expensive = [3,4,8,7,9,6,4,3,2,3]


fig_size = plt.rcParams["figure.figsize"] #set chart size (longer than taller)
fig_size[0] = 39
fig_size[1] = 10
plt.rcParams["figure.figsize"] = fig_size
plt.rcParams.update({'font.size': 18}) 

plt.stackplot(x_axis, expensive, colors=['r'])
plt.stackplot(x_axis, cheap, colors=['g'])

plt.plot([],[],color='r', label='Above great case', linewidth=5)
plt.plot([],[],color='g', label='Below low case', linewidth=5)
plt.legend()

plt.xlabel('Years')
plt.ylabel('Number of companies')
plt.title('Under/over valuation over time')
plt.show()

您应该看到的图表: enter image description here

该例程实际上用于绘制具有数千个x轴数据点的图表。我在条形图之前尝试过,绘制所需的时间比该区域版本长得多。以下是生成的真实图表的示例:

enter image description here

答案 1 :(得分:0)

假设您有一个以组为列的pandas DataFrame df,则可以执行以下操作:

import matplotlib.pyplot as plt
fig, ax = plt.subplots()
# split dataframe df into negative only and positive only values
df_neg, df_pos = df.clip(upper=0), df.clip(lower=0)
# stacked area plot of positive values
df_pos.plot.area(ax=ax, stacked=True, linewidth=0.)
# reset the color cycle
ax.set_prop_cycle(None)
# stacked area plot of negative values, prepend column names with '_' such that they don't appear in the legend
df_neg.rename(columns=lambda x: '_' + x).plot.area(ax=ax, stacked=True, linewidth=0.)
# rescale the y axis
ax.set_ylim([df_neg.sum(axis=1).min(), df_pos.sum(axis=1).max()])