这是Stata在一步中处理的数据分析中的基本问题。
使用时间不变数据(x0)和2000年和2005年的时变数据(x1,x2)创建一个宽数据框:
d1 <- data.frame(subject = c("id1", "id2"),
x0 = c("male", "female"),
x1_2000 = 1:2,
x1_2005 = 5:6,
x2_2000 = 1:2,
x2_2005 = 5:6
)
s.t。
subject x0 x1_2000 x1_2005 x2_2000 x2_2005
1 id1 male 1 5 1 5
2 id2 female 2 6 2 6
我想像面板一样塑造它,所以数据看起来像这样:
subject x0 time x1 x2
1 id1 male 2000 1 1
2 id2 female 2000 2 2
3 id1 male 2005 5 5
4 id2 female 2005 6 6
我可以使用reshape
s.t。
d2 <-reshape(d1,
idvar="subject",
varying=list(c("x1_2000","x1_2005"),
c("x2_2000","x2_2005")),
v.names=c("x1","x2"),
times = c(2000,2005),
direction = "long",
sep= "_")
我主要担心的是,当你有几十个变量时,上面的命令会变得很长。在stata
中,只需键入:
reshape long x1 x2, i(subject) j(year)
R中有这么简单的解决方案吗?
答案 0 :(得分:12)
reshape
可以猜出它的许多论点。在这种情况下,指定以下内容就足够了。没有包使用。
reshape(d1, dir = "long", varying = 3:6, sep = "_")
,并提供:
subject x0 time x1 x2 id
1.2000 id1 male 2000 1 1 1
2.2000 id2 female 2000 2 2 2
1.2005 id1 male 2005 5 5 1
2.2005 id2 female 2005 6 6 2
答案 1 :(得分:4)
这是使用reshape2包的简短示例:
library(reshape2)
library(stringr)
# it is always useful to start with melt
d2 <- melt(d1, id=c("subject", "x0"))
# redefine the time and x1, x2, ... separately
d2 <- transform(d2, time = str_replace(variable, "^.*_", ""),
variable = str_replace(variable, "_.*$", ""))
# finally, cast as you want
d3 <- dcast(d2, subject+x0+time~variable)
现在你甚至不需要指定x1和x2 如果变量增加,此代码有效:
> d1 <- data.frame(subject = c("id1", "id2"), x0 = c("male", "female"),
+ x1_2000 = 1:2,
+ x1_2005 = 5:6,
+ x2_2000 = 1:2,
+ x2_2005 = 5:6,
+ x3_2000 = 1:2,
+ x3_2005 = 5:6,
+ x4_2000 = 1:2,
+ x4_2005 = 5:6
+ )
>
> d2 <- melt(d1, id=c("subject", "x0"))
> d2 <- transform(d2, time = str_replace(variable, "^.*_", ""),
+ variable = str_replace(variable, "_.*$", ""))
>
> d3 <- dcast(d2, subject+x0+time~variable)
>
> d3
subject x0 time x1 x2 x3 x4
1 id1 male 2000 1 1 1 1
2 id1 male 2005 5 5 5 5
3 id2 female 2000 2 2 2 2
4 id2 female 2005 6 6 6 6