我尝试读入一些结构不佳的csv文件:
[empty], A, A, B, B
time , X, Y, X, Y
0.0 , 0, 0, 0, 0
1.0 , 2, 5, 7, 0
... , ., ., ., .
将pandas.read_csv
与header=[0,1]
参数一起使用,可以很好地访问值:
>>> df = pd.read_csv('file.csv', header=[0,1]'
>>> df.A.X
0 0
1 2
...
但是时间标题上方的空白字段会导致丑陋的Unnamed: 0_level_0
级别:
>>> df.columns
MultiIndex(levels=[['Unnamed: 0_level_0', 'A', 'B'], ...
有什么办法可以解决此问题,因此我可以再次使用df.Time
访问时间数据吗?
修改
这是真实数据集的摘要:
,,Bone,Bone,Bone
,,Skeleton1_Hip,Skeleton1_Hip,Skeleton1_Hip
,,"1","1","1"
,,Rotation,Rotation,Rotation
Frame,Time,X,Y,Z
0,0.000000,0.009332,0.999247,0.021044
1,0.008333,0.009572,0.999217,0.020468
3,0.016667,0.009871,0.999183,0.019797
(有关更完整的示例,另请参见:https://gist.github.com/fhaust/25ba612f99420d366f0597b15dbf43e7)
阅读方式:
pd.read_csv(file, skiprows=2, header=[0,1,3,4], index_col=[1])
我不太在意Frame
列,因为它是与行索引隐式给出的。
答案 0 :(得分:1)
添加参数index_col
以将第一列转换为index
:
import pandas as pd
temp=u""",A,A,B,B
time,X,Y,X,Y
0.0,0,0,0,0
1.0,2,5,7,0"""
#after testing replace 'pd.compat.StringIO(temp)' to 'filename.csv'
df = pd.read_csv(pd.compat.StringIO(temp), header=[0,1], index_col=[0])
print (df)
A B
time X Y X Y
0.0 0 0 0 0
1.0 2 5 7 0
或重命名列:
df = df.rename(columns={'Unnamed: 0_level_0':'val'})
print (df)
val A B
time X Y X Y
0 0.0 0 0 0 0
1 1.0 2 5 7 0