我想使用WordNet Lemmatizer找出引理,并且我还需要计算每个单词的频率。
我遇到以下错误。
跟踪如下:
TypeError:不可散列的类型:“列表”
注意:语料库在nltk
软件包本身中可用。
到目前为止,我尝试过的操作如下:
import nltk, re
import string
from collections import Counter
from string import punctuation
from nltk.tokenize import TweetTokenizer, sent_tokenize, word_tokenize
from nltk.corpus import gutenberg, stopwords
from nltk.stem import WordNetLemmatizer
def remove_punctuation(from_text):
table = str.maketrans('', '', string.punctuation)
stripped = [w.translate(table) for w in from_text]
return stripped
def preprocessing():
raw_data = (gutenberg.raw('shakespeare-hamlet.txt'))
tokens_sentences = sent_tokenize(raw_data)
tokens = [[word.lower() for word in line.split()] for line in tokens_sentences]
print(len(tokens))
global stripped_tokens
stripped_tokens = [remove_punctuation(i) for i in tokens]
sw = (stopwords.words('english'))
filter_set = [[token for token in sentence if (token.lower() not in sw and token.isalnum())] for sentence in stripped_tokens]
lemma= WordNetLemmatizer()
global lem
lem = []
for w in filter_set:
lem.append(lemma.lemmatize(w))
preprocessing()
请帮助我解决问题。
答案 0 :(得分:1)
问题是lemma.lemmatize
期望string
,而您传递的是list
。 filter_set
的元素是lists
。您需要更改行:
lem.append(lemma.lemmatize(w))
像这样:
lem.append([wi for wi in map(lemma.lemmatize, w)])
以上代码将lemma.lemmatize应用于wi
中的每个令牌(w
)。完整代码:
import nltk, re
import string
from collections import Counter
from string import punctuation
from nltk.tokenize import TweetTokenizer, sent_tokenize, word_tokenize
from nltk.corpus import gutenberg, stopwords
from nltk.stem import WordNetLemmatizer
def remove_punctuation(from_text):
table = str.maketrans('', '', string.punctuation)
stripped = [w.translate(table) for w in from_text]
return stripped
def preprocessing():
raw_data = (gutenberg.raw('shakespeare-hamlet.txt'))
tokens_sentences = sent_tokenize(raw_data)
tokens = [[word.lower() for word in line.split()] for line in tokens_sentences]
print(len(tokens))
stripped_tokens = [remove_punctuation(i) for i in tokens]
sw = (stopwords.words('english'))
filter_set = [[token for token in sentence if (token.lower() not in sw and token.isalnum())] for sentence in
stripped_tokens]
lemma = WordNetLemmatizer()
lem = []
for w in filter_set:
lem.append([wi for wi in map(lemma.lemmatize, w)])
return lem
result = preprocessing()
for e in result[:10]: # take the first 10 results
print(e)
输出
['tragedie', 'hamlet', 'william', 'shakespeare', '1599', 'actus', 'primus']
['scoena', 'prima']
['enter', 'barnardo', 'francisco', 'two', 'centinels']
['barnardo']
['who']
['fran']
['nay', 'answer', 'stand', 'vnfold', 'selfe', 'bar']
['long', 'liue', 'king', 'fran']
['barnardo']
['bar']
更新
要获取频率,可以使用Counter
:
result = preprocessing()
frequencies = Counter(word for sentence in result for word in sentence)
for word, frequency in frequencies.most_common(10): # get the 10 most frequent words
print(word, frequency)
输出
ham 337
lord 217
king 180
haue 175
come 127
let 107
shall 107
hamlet 107
thou 105
good 98