使用MockSchemaRegistry发布TopologyTestDriver时出现问题

时间:2018-10-17 13:54:26

标签: java unit-testing apache-kafka apache-kafka-streams

我面临着TopologyTestDriver的问题,因为必须设置属性KafkaAvroSerializerConfig.SCHEMA_REGISTRY_URL_CONFIG, "url",当拓扑试图将记录发布到主题中时,它将转到配置中提供的“ URL” 。如何模拟该访问权限以指向MockedSchemaRegistry?

使用mockSchemaRegistryClient.register

将avro中的记录写入主题

还有另一个问题,如何将stateStore加载到拓扑中?我正在初始化时创建stateStore(该主题已创建)

我的依靠:

    testImplementation("org.junit.jupiter:junit-jupiter-api:5.3.1")
    testRuntimeOnly("org.junit.jupiter:junit-jupiter-engine:5.3.1")
    testCompile 'org.mockito:mockito-core:2.18.3'
    testCompile 'org.assertj:assertj-core:3.9.1'
    testCompile ("org.mockito:junit-jupiter:2.20.0")
    testCompile 'org.skyscreamer:jsonassert:1.5.0'
    testCompile group: 'org.springframework', name: 'spring-test', version: '5.0.8.RELEASE'
    testCompile 'org.apache.kafka:kafka-streams-test-utils:2.0.0'

这是我的代码:

@ExtendWith(SpringExtension.class)
@Import({KafkaStreamsCdlcfMapperConfiguration.class, KafkaStreamsCdlcfMapperSpecificConfiguration.class,
        CdlcfStreamsTopologyImpl.class, CdlcfMappingProcessor.class, CdlcfMappingServiceImpl.class, RecordParserServiceImpl.class,
        FormatFileFromJarImpl.class})
@TestPropertySource(locations = "../application.properties")
public class SyncronizerIntegrationTest {

    String schemaRegistryUrl = "http://mock:8081";

    @Autowired
    private CdlcfStreamsTopology cdlcfStreamsTopology;


    private GenericDatumWriter<GenericRecord> datumWriter;

    MockSchemaRegistryClient mockSchemaRegistryClient = new MockSchemaRegistryClient();

    @Value("${cdlcf-mapper.topics.unmapped-cdlcf}") String unmappedCdlcfTopic;
    @Value("${cdlcf-mapper.topics.mapped-cdlcf}") String mappedCdlcfTopic;
    @Value("${cdlcf.topics.logs}") String logsTopic;

    @Test
    void integrationTest() throws Exception {

        Properties fakeProps = new Properties();
        fakeProps.setProperty(StreamsConfig.APPLICATION_ID_CONFIG, "streamsTest");
        fakeProps.setProperty(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, "dummy:1234");
        fakeProps.setProperty(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.String().getClass().getName());
        fakeProps.setProperty(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, GenericAvroSerde.class.getName());

        fakeProps.setProperty("value.serializer", KafkaAvroSerializer.class.getName());
        fakeProps.setProperty(KafkaAvroSerializerConfig.SCHEMA_REGISTRY_URL_CONFIG, "url"); //If records are produced will try to register the record in the schemaRegistry

        StreamsBuilder kStreamBuilder = new StreamsBuilder();

        int idSchema = mockSchemaRegistryClient.register(getSubjectName("topic",false),Tracking.getClassSchema());
        Serde<GenericRecord> avroSerde = getAvroSerde(mockSchemaRegistryClient);


        ConsumerRecordFactory<String, String> recordFactory = new ConsumerRecordFactory<>(new StringSerializer(),  new StringSerializer());

        String lineContent="lineContent";



        TopologyTestDriver testDriver = new TopologyTestDriver(cdlcfStreamsTopology.getTopology(),fakeProps);

        testDriver.pipeInput(recordFactory.create(unmappedCdlcfTopic,"CDLCF_20180903_125115009", lineContent));

    }

引发异常(显然是因为没有启动schemaRegistry)

org.apache.kafka.streams.errors.StreamsException: Exception caught in 
process. taskId=0_0, processor=KSTREAM-SOURCE-0000000002, topic=test, partition=0, offset=0

    at org.apache.kafka.streams.processor.internals.StreamTask.process(StreamTask.java:304)
    at org.apache.kafka.streams.TopologyTestDriver.pipeInput(TopologyTestDriver.java:393)

Caused by: org.apache.kafka.common.errors.SerializationException: Error serializing Avro message
Caused by: java.net.ConnectException: Connection refused (Connection refused)
    at java.net.PlainSocketImpl.socketConnect(Native Method)
    at java.net.AbstractPlainSocketImpl.doConnect(AbstractPlainSocketImpl.java:350)
    at java.net.AbstractPlainSocketImpl.connectToAddress(AbstractPlainSocketImpl.java:206)
    at java.net.AbstractPlainSocketImpl.connect(AbstractPlainSocketImpl.java:188)
    at java.net.SocksSocketImpl.connect(SocksSocketImpl.java:392)
    at java.net.Socket.connect(Socket.java:589)
    at java.net.Socket.connect(Socket.java:538)
    at sun.net.NetworkClient.doConnect(NetworkClient.java:180)
    at sun.net.www.http.HttpClient.openServer(HttpClient.java:463)
    at sun.net.www.http.HttpClient.openServer(HttpClient.java:558)
    at sun.net.www.http.HttpClient.<init>(HttpClient.java:242)
    at sun.net.www.http.HttpClient.New(HttpClient.java:339)
    at sun.net.www.http.HttpClient.New(HttpClient.java:357)
    at sun.net.www.protocol.http.HttpURLConnection.getNewHttpClient(HttpURLConnection.java:1220)
    at sun.net.www.protocol.http.HttpURLConnection.plainConnect0(HttpURLConnection.java:1156)
    at sun.net.www.protocol.http.HttpURLConnection.plainConnect(HttpURLConnection.java:1050)
    at sun.net.www.protocol.http.HttpURLConnection.connect(HttpURLConnection.java:984)
    at sun.net.www.protocol.http.HttpURLConnection.getOutputStream0(HttpURLConnection.java:1334)
    at sun.net.www.protocol.http.HttpURLConnection.getOutputStream(HttpURLConnection.java:1309)
    at io.confluent.kafka.schemaregistry.client.rest.RestService.sendHttpRequest(RestService.java:172)
    at io.confluent.kafka.schemaregistry.client.rest.RestService.httpRequest(RestService.java:229)
    at io.confluent.kafka.schemaregistry.client.rest.RestService.registerSchema(RestService.java:320)
    at io.confluent.kafka.schemaregistry.client.rest.RestService.registerSchema(RestService.java:312)
    at io.confluent.kafka.schemaregistry.client.rest.RestService.registerSchema(RestService.java:307)
    at io.confluent.kafka.schemaregistry.client.CachedSchemaRegistryClient.registerAndGetId(CachedSchemaRegistryClient.java:114)
    at io.confluent.kafka.schemaregistry.client.CachedSchemaRegistryClient.register(CachedSchemaRegistryClient.java:153)
    at io.confluent.kafka.serializers.AbstractKafkaAvroSerializer.serializeImpl(AbstractKafkaAvroSerializer.java:79)
    at io.confluent.kafka.serializers.KafkaAvroSerializer.serialize(KafkaAvroSerializer.java:53)
    at io.confluent.kafka.streams.serdes.avro.SpecificAvroSerializer.serialize(SpecificAvroSerializer.java:65)
    at io.confluent.kafka.streams.serdes.avro.SpecificAvroSerializer.serialize(SpecificAvroSerializer.java:38)
    at org.apache.kafka.streams.processor.internals.RecordCollectorImpl.send(RecordCollectorImpl.java:154)
    at org.apache.kafka.streams.processor.internals.RecordCollectorImpl.send(RecordCollectorImpl.java:98)
    at org.apache.kafka.streams.processor.internals.SinkNode.process(SinkNode.java:89)
    at org.apache.kafka.streams.processor.internals.ProcessorContextImpl.forward(ProcessorContextImpl.java:143)
    at org.apache.kafka.streams.processor.internals.ProcessorContextImpl.forward(ProcessorContextImpl.java:129)
    at org.apache.kafka.streams.processor.internals.ProcessorContextImpl.forward(ProcessorContextImpl.java:90)
    at org.apache.kafka.streams.kstream.internals.KStreamPassThrough$KStreamPassThroughProcessor.process(KStreamPassThrough.java:33)
    at org.apache.kafka.streams.processor.internals.ProcessorNode$1.run(ProcessorNode.java:50)
    at org.apache.kafka.streams.processor.internals.ProcessorNode.runAndMeasureLatency(ProcessorNode.java:244)
    at org.apache.kafka.streams.processor.internals.ProcessorNode.process(ProcessorNode.java:133)
    at org.apache.kafka.streams.processor.internals.ProcessorContextImpl.forward(ProcessorContextImpl.java:143)
    at org.apache.kafka.streams.processor.internals.ProcessorContextImpl.forward(ProcessorContextImpl.java:122)
    at org.apache.kafka.streams.kstream.internals.KStreamBranch$KStreamBranchProcessor.process(KStreamBranch.java:48)
    at org.apache.kafka.streams.processor.internals.ProcessorNode$1.run(ProcessorNode.java:50)
    at org.apache.kafka.streams.processor.internals.ProcessorNode.runAndMeasureLatency(ProcessorNode.java:244)
    at org.apache.kafka.streams.processor.internals.ProcessorNode.process(ProcessorNode.java:133)
    at org.apache.kafka.streams.processor.internals.ProcessorContextImpl.forward(ProcessorContextImpl.java:143)
    at org.apache.kafka.streams.processor.internals.ProcessorContextImpl.forward(ProcessorContextImpl.java:126)
    at org.apache.kafka.streams.processor.internals.ProcessorContextImpl.forward(ProcessorContextImpl.java:90)
    at org.apache.kafka.streams.kstream.internals.KStreamFlatMap$KStreamFlatMapProcessor.process(KStreamFlatMap.java:42)
    at org.apache.kafka.streams.processor.internals.ProcessorNode$1.run(ProcessorNode.java:50)
    at org.apache.kafka.streams.processor.internals.ProcessorNode.runAndMeasureLatency(ProcessorNode.java:244)
    at org.apache.kafka.streams.processor.internals.ProcessorNode.process(ProcessorNode.java:133)
    at org.apache.kafka.streams.processor.internals.ProcessorContextImpl.forward(ProcessorContextImpl.java:143)
    at org.apache.kafka.streams.processor.internals.ProcessorContextImpl.forward(ProcessorContextImpl.java:129)
    at org.apache.kafka.streams.processor.internals.ProcessorContextImpl.forward(ProcessorContextImpl.java:90)
    at org.apache.kafka.streams.processor.internals.SourceNode.process(SourceNode.java:87)
    at org.apache.kafka.streams.processor.internals.StreamTask.process(StreamTask.java:288)
    at org.apache.kafka.streams.TopologyTestDriver.pipeInput(TopologyTestDriver.java:393)

3 个答案:

答案 0 :(得分:1)

好,感谢Matthias,找到了一个可行的解决方案,但我会提出一些技巧,以改善此解决方法。因为我必须添加一个仅用于测试的方法(我不喜欢)。 正如Matthias指出的那样,问题在于拓扑内部生成的Serdes没有指向模拟的架构。所以我写了一个Serdes Setter,并设定了“模拟Serdes”

解决方案代码在这里:

拓扑设置者(想更改此...)

 cdlcfStreamsTopology.setSerdes(trackinSerde, logSerde);

使用模拟的架构创建Avro Serdes

 Serde<Tracking> trackinSerde = getAvroSerde(mockSchemaRegistryClient);
 Serde<Log> logSerde = getAvroSerde(mockSchemaRegistryClient);

private <T extends SpecificRecord> Serde<T> getAvroSerde(SchemaRegistryClient schemaRegistryClient) {

        OwnSpecificAvroSerde serde = new OwnSpecificAvroSerde(schemaRegistryClient,schemaRegistryUrl);
        return serde;
    }

我必须创建此OwnSpecificAvroSerde才能通过构造方法传递嘲笑的模式。为此,我必须创建一个与avro库同名的本地包,才能访问具有架构构造函数的默认类。

package io.confluent.kafka.streams.serdes.avro;

public class OwnSpecificAvroSerde<T extends GenericRecord> extends GenericAvroSerde {

    private String registryUrl;

//    public OwnSpecificAvroSerde(String registryUrl) {
//        this.registryUrl=registryUrl;
//    }
    public OwnSpecificAvroSerde(SchemaRegistryClient schemaRegistryClient,String registryUrl) {
        super(schemaRegistryClient);
    }

    public <T> Serde<T> getAvroSerde(boolean isKey, MockSchemaRegistryClient mockSchemaRegistryClient) {
        return Serdes.serdeFrom(getSerializer(isKey,mockSchemaRegistryClient), getDeserializer(isKey,mockSchemaRegistryClient));
    }

    private <T> Serializer<T> getSerializer(boolean isKey, MockSchemaRegistryClient mockSchemaRegistryClient) {
        Map<String, Object> map = new HashMap<>();
        map.put(KafkaAvroDeserializerConfig.AUTO_REGISTER_SCHEMAS, true);
        map.put(KafkaAvroDeserializerConfig.SCHEMA_REGISTRY_URL_CONFIG, registryUrl);
        Serializer<T> serializer = (Serializer) new KafkaAvroSerializer(mockSchemaRegistryClient);
        serializer.configure(map, isKey);
        return serializer;
    }

    private <T> Deserializer<T> getDeserializer(boolean key, MockSchemaRegistryClient mockSchemaRegistryClient) {
        Map<String, Object> map = new HashMap<>();
        map.put(KafkaAvroDeserializerConfig.SPECIFIC_AVRO_READER_CONFIG, "true");
        map.put(KafkaAvroDeserializerConfig.SCHEMA_REGISTRY_URL_CONFIG, registryUrl);
        Deserializer<T> deserializer = (Deserializer) new KafkaAvroDeserializer(mockSchemaRegistryClient);
        deserializer.configure(map, key);
        return deserializer;
    }


}

重要的是,将模式注册到模拟的模式注册表中:

mockSchemaRegistryClient.register(getSubjectName(mappedCdlcfTopic,false),Tracking.getClassSchema());
mockSchemaRegistryClient.register(getSubjectName(logsTopic,false), Log.getClassSchema());

为了生成与生成的密钥相同的密钥,还必须从mockedSchema库中导入getSubjectName,以查找模式ID。

static String getSubjectName(String topic, boolean isKey) {
    return isKey ? topic + "-key" : topic + "-value";
}

答案 1 :(得分:0)

答案 2 :(得分:0)

我对kafka流,TopologyTestDriver和MockSchemaRegistry有完全相同的问题。我总是通过向我尝试测试的kafka流拓扑提供键和值序列来解决此问题。

示例:

myStream
    .mapValues(value -> MyCustomAvro.newBuilder()
        .setValue1(value.getValue1())
        .setValue2(value.getValue2())
        .build())
    .to("myTopic",Produced.with(Serdes.String(), myCustomSerde));

myStream.groupByKey()
    .aggregate(
        () -> new myCustomAvro(),
        (key, value1, value2) ->  new myCustomAvro(value1, value2),
        Materialized.<String, MyCustomAvro, KeyValueStore<Bytes, byte[]>>as(
            "my_custom_table")
            .withKeySerde(Serdes.String())
            .withValueSerde(myCustomSerde));

这样,它可以处理内部主题和存储,因为您可以在测试阶段使用MockSchemaRegistryClient配置myCustomSerde。您甚至不必将主题注册到MockSchemaRegistryClient中。您只需要像这样配置您的SERDES:

SpecificAvroSerde<SpecificRecord> mySerde = new SpecificAvroSerde<>(
    mockSchemaRegistryClient);