这是我拥有的数据框
import pandas as pd
import datetime
data = [['A1','String01',45,datetime.date(2018,1,1),datetime.date(2018,3,1)],
['A1','String02',46,datetime.date(2018,3,1),datetime.date(2018,4,29)],
['A1','String03',48,datetime.date(2018,4,29),datetime.date(2018,6,30)],
['A1','String04',51,datetime.date(2018,6,30),datetime.date(2018,12,31)],
['A2','String11',32,datetime.date(2018,1,1),datetime.date(2018,6,1)],
['A2','String12',33,datetime.date(2018,6,1),datetime.date(2018,7,30)],
['A2','String13',54,datetime.date(2018,8,11),datetime.date(2018,12,31)],
['A3','String21',45,datetime.date(2018,1,1),datetime.date(2018,6,1)],
['A3','String22',47,datetime.date(2018,7,1),datetime.date(2018,12,31)],]
cols = ['ID','SomeValue','Price','StartDate','EndDate']
df = pd.DataFrame(data,columns=cols)
print(df)
如果我们打印数据框,则可以看到ID = A2的价格从7/31到8/11丢失(查看StartDate和EndDate)。我们遇到了ID = A3
的情况我想做的是,找出按ID分组的StartDate-EndDate(属于前几列)。
我的输出应类似于:
ID SomeValue Price StartDate EndDate NoOfDaysMissing
0 A1 String01 45 2018-01-01 2018-03-01 NaN
1 A1 String02 46 2018-03-01 2018-04-29 0.0
2 A1 String03 48 2018-04-29 2018-06-30 0.0
3 A1 String04 51 2018-06-30 2018-12-31 0.0
4 A2 String11 32 2018-01-01 2018-06-01 NaN
5 A2 String12 33 2018-06-01 2018-07-30 0.0
6 A2 String13 54 2018-08-11 2018-12-31 12.0
7 A3 String21 45 2018-01-01 2018-06-01 NaN
8 A3 String22 47 2018-07-01 2018-12-31 30.0
缺少NoOfDays由StartDate-EndDate(上一行)针对每个ID(按每个ID分组)计算
答案 0 :(得分:1)
使用shift
从上一行获取EndDate,取其差值,然后在dt
中使用具有days
属性的groupby
访问器:
df[['StartDate','EndDate']] = df[['StartDate','EndDate']].apply(pd.to_datetime)
df['NoOfDaysMissing'] = df.groupby('ID', group_keys=False)\
.apply(lambda x: (x['StartDate'] - x['EndDate'].shift()).dt.days)
df
输出:
ID SomeValue Price StartDate EndDate NoOfDaysMissing
0 A1 String01 45 2018-01-01 2018-03-01 NaN
1 A1 String02 46 2018-03-01 2018-04-29 0.0
2 A1 String03 48 2018-04-29 2018-06-30 0.0
3 A1 String04 51 2018-06-30 2018-12-31 0.0
4 A2 String11 32 2018-01-01 2018-06-01 NaN
5 A2 String12 33 2018-06-01 2018-07-30 0.0
6 A2 String13 54 2018-08-11 2018-12-31 12.0
7 A3 String21 45 2018-01-01 2018-06-01 NaN
8 A3 String22 47 2018-07-01 2018-12-31 30.0