使用逐位运算符实现除法

时间:2011-03-12 19:29:28

标签: bit-manipulation bit

如何使用逐位运算符实现除法(不只是除以2的幂)?

详细描述。

11 个答案:

答案 0 :(得分:55)

进行除法的标准方法是实现二进制长除法。这涉及到减法,所以只要你不把它作为一个按位操作来折扣,那么这就是你应该做的。 (注意,您当然可以使用按位逻辑运算非常繁琐地实现减法。)

从本质上讲,如果你正在做Q = N/D

  1. 对齐ND中最重要的内容。
  2. 计算t = (N - D);
  3. 如果(t >= 0),则将Q的最低有效位设置为1,并设置N = t
  4. 左移N乘以1。
  5. 左移Q乘以1。
  6. 转到第2步。
  7. 根据需要循环输出多个输出位(包括小数),然后应用最后一个移位来撤消在步骤1中执行的操作。

答案 1 :(得分:9)

使用按位运算符对两个数字进行划分。

#include <stdio.h>

int remainder, divisor;

int division(int tempdividend, int tempdivisor) {
    int quotient = 1;

    if (tempdivisor == tempdividend) {
        remainder = 0;
        return 1;
    } else if (tempdividend < tempdivisor) {
        remainder = tempdividend;
        return 0;
    }   

    do{

        tempdivisor = tempdivisor << 1;
        quotient = quotient << 1;

     } while (tempdivisor <= tempdividend);


     /* Call division recursively */
    quotient = quotient + division(tempdividend - tempdivisor, divisor);

    return quotient;
} 


int main() {
    int dividend;

    printf ("\nEnter the Dividend: ");
    scanf("%d", &dividend);
    printf("\nEnter the Divisor: ");
    scanf("%d", &divisor);   

    printf("\n%d / %d: quotient = %d", dividend, divisor, division(dividend, divisor));
    printf("\n%d / %d: remainder = %d", dividend, divisor, remainder);
    getch();
}

答案 2 :(得分:5)

int remainder =0;

int division(int dividend, int divisor)
{
    int quotient = 1;

    int neg = 1;
    if ((dividend>0 &&divisor<0)||(dividend<0 && divisor>0))
        neg = -1;

    // Convert to positive
    unsigned int tempdividend = (dividend < 0) ? -dividend : dividend;
    unsigned int tempdivisor = (divisor < 0) ? -divisor : divisor;

    if (tempdivisor == tempdividend) {
        remainder = 0;
        return 1*neg;
    }
    else if (tempdividend < tempdivisor) {
        if (dividend < 0)
            remainder = tempdividend*neg;
        else
            remainder = tempdividend;
        return 0;
    }
    while (tempdivisor<<1 <= tempdividend)
    {
        tempdivisor = tempdivisor << 1;
        quotient = quotient << 1;
    }

    // Call division recursively
    if(dividend < 0)
        quotient = quotient*neg + division(-(tempdividend-tempdivisor), divisor);
    else
        quotient = quotient*neg + division(tempdividend-tempdivisor, divisor);
     return quotient;
 }


void main()
{
    int dividend,divisor;
    char ch = 's';
    while(ch != 'x')
    {
        printf ("\nEnter the Dividend: ");
        scanf("%d", &dividend);
        printf("\nEnter the Divisor: ");
        scanf("%d", &divisor);

        printf("\n%d / %d: quotient = %d", dividend, divisor, division(dividend, divisor));
        printf("\n%d / %d: remainder = %d", dividend, divisor, remainder);

        _getch();
    }
}

答案 3 :(得分:3)

此解决方案完美无缺。

#include <stdio.h>

int division(int dividend, int divisor, int origdiv, int * remainder)
{
    int quotient = 1;

    if (dividend == divisor)
    {
        *remainder = 0;
        return 1;
    }

    else if (dividend < divisor)
    {
        *remainder = dividend;
        return 0;
    }

    while (divisor <= dividend)
    {
        divisor = divisor << 1;
        quotient = quotient << 1;
    }

    if (dividend < divisor)
    {
        divisor >>= 1;
        quotient >>= 1;
    }

    quotient = quotient + division(dividend - divisor, origdiv, origdiv, remainder);

    return quotient;
}

int main()
{
    int n = 377;
    int d = 7;
    int rem = 0;

    printf("Quotient : %d\n", division(n, d, d, &rem));
    printf("Remainder: %d\n", rem);

    return 0;
}

答案 4 :(得分:2)

我假设我们正在讨论整数划分。

考虑到我有两个数字1502和30,我想计算1502/30。这就是我们这样做的方式:

首先,我们将30与1501对齐,最显着的数字; 30与3000相比,1501与3000相比,1501包含0的3000.然后我们将1501与300比较,它包含300中的5,然后比较(1501-5 * 300)与30.最后我们得到5 *( 10 ^ 1)= 50这个分裂的结果。

现在将1501和30转换为二进制数字。然后,不是将30与(10 ^ x)相乘以使其与1501对齐,而是将(2)乘以2 ^ 2与2 ^ n对齐。并且2 ^ n可以转换为左移n个位置。

以下是代码:

int divide(int a, int b){
    if (b != 0)
        return;

    //To check if a or b are negative.
    bool neg = false;
    if ((a>0 && b<0)||(a<0 && b>0))
        neg = true;

    //Convert to positive
    unsigned int new_a = (a < 0) ? -a : a;
    unsigned int new_b = (b < 0) ? -b : b;

    //Check the largest n such that b >= 2^n, and assign the n to n_pwr
    int n_pwr = 0;
    for (int i = 0; i < 32; i++)
    {
        if (((1 << i) & new_b) != 0)
            n_pwr = i;
    }

    //So that 'a' could only contain 2^(31-n_pwr) many b's,
    //start from here to try the result
    unsigned int res = 0;
    for (int i = 31 - n_pwr; i >= 0; i--){
        if ((new_b << i) <= new_a){
            res += (1 << i);
            new_a -= (new_b << i);
        }
    }

    return neg ? -res : res;
}

没有测试,但你明白了。

答案 5 :(得分:1)

在没有divison运算符的情况下实现除法: 您需要包含减法。但是就像你手工做的那样(仅在2的基础上)。附加的代码提供了一个完整的函数。

uint32_t udiv32(uint32_t n, uint32_t d) {
    // n is dividend, d is divisor
    // store the result in q: q = n / d
    uint32_t q = 0;

    // as long as the divisor fits into the remainder there is something to do
    while (n >= d) {
        uint32_t i = 0, d_t = d;
        // determine to which power of two the divisor still fits the dividend
        //
        // i.e.: we intend to subtract the divisor multiplied by powers of two
        // which in turn gives us a one in the binary representation 
        // of the result
        while (n >= (d_t << 1) && ++i)
            d_t <<= 1;
        // set the corresponding bit in the result
        q |= 1 << i;
        // subtract the multiple of the divisor to be left with the remainder
        n -= d_t;
        // repeat until the divisor does not fit into the remainder anymore
    }
    return q;
}

答案 6 :(得分:0)

下面的方法是二进制除法的实现,考虑到两个数字都是正数。如果减法是一个问题,我们也可以使用二元运算符来实现。

代码

-(int)binaryDivide:(int)numerator with:(int)denominator
{
    if (numerator == 0 || denominator == 1) {
        return numerator;
    }

    if (denominator == 0) {

        #ifdef DEBUG
            NSAssert(denominator == 0, @"denominator should be greater then 0");
        #endif
        return INFINITY;
    }

    // if (numerator <0) {
    //     numerator = abs(numerator);
    // }

    int maxBitDenom = [self getMaxBit:denominator];
    int maxBitNumerator = [self getMaxBit:numerator];
    int msbNumber = [self getMSB:maxBitDenom ofNumber:numerator];

    int qoutient = 0;

    int subResult = 0;

    int remainingBits = maxBitNumerator-maxBitDenom;

    if (msbNumber >= denominator) {
        qoutient |=1;
        subResult = msbNumber - denominator;
    }
    else {
        subResult = msbNumber;
    }

    while (remainingBits>0) {
        int msbBit = (numerator & (1 << (remainingBits-1)))>0 ? 1 : 0;
        subResult = (subResult << 1) |msbBit;
        if (subResult >= denominator) {
            subResult = subResult-denominator;
            qoutient = (qoutient << 1) | 1;
        }
        else {
            qoutient = qoutient << 1;
        }
        remainingBits--;
    }
    return qoutient;
}


-(int)getMaxBit:(int)inputNumber
{
    int maxBit =0;
    BOOL isMaxBitSet = NO;
    for (int i=0; i<sizeof(inputNumber)*8; i++) {
        if (inputNumber & (1 << i) ) {
            maxBit = i;
            isMaxBitSet=YES;
        }
    }
    if (isMaxBitSet) {
        maxBit += 1;
    }
    return maxBit;
}


-(int)getMSB:(int)bits ofNumber:(int)number
{
    int numbeMaxBit = [self getMaxBit:number];
    return number >> (numbeMaxBit -bits);
}

答案 7 :(得分:0)

对于整数:

public class Division {

    public static void main(String[] args) {
        System.out.println("Division: " + divide(100, 9));
    }

    public static int divide(int num, int divisor) {
        int sign = 1;
        if((num > 0 && divisor < 0) || (num < 0 && divisor > 0))
            sign = -1;

        return divide(Math.abs(num), Math.abs(divisor), Math.abs(divisor)) * sign;
    }

    public static int divide(int num, int divisor, int sum) {
        if (sum > num) {
            return 0;
        }

        return 1 + divide(num, divisor, sum + divisor);
    }
}

答案 8 :(得分:0)

关于C&C变换行为的常见警告,这应该适用于无符号数量,无论int的原始大小...

static unsigned int udiv(unsigned int a, unsigned int b) {
  unsigned int c = 1, result = 0;

  if (b == 0) return (unsigned int)-1 /*infinity*/;

  while (((int)b > 0) && (b < a)) { b = b<<1; c = c<<1; }

  do {
    if (a >= b) { a -= b; result += c; }
    b = b>>1; c = c>>1;
  } while (c);

  return result;
}

答案 9 :(得分:-1)

所有这些解决方案都太长了。基本思路是将商(例如,5 = 101)写为100 + 00 + 1 = 101。

public static Point divide(int a, int b) {

    if (a < b)
        return new Point(0,a);
    if (a == b)
        return new Point(1,0);
    int q = b;
    int c = 1;
    while (q<<1 < a) {
        q <<= 1;
        c <<= 1;
    }
    Point r = divide(a-q, b);
    return new Point(c + r.x, r.y);
}


public static class Point {
    int x;
    int y;

    public Point(int x, int y) {
        this.x = x;
        this.y = y;
    }

    public int compare(Point b) {
        if (b.x - x != 0) {
            return x - b.x;
        } else {
            return y - b.y;
        }
    }

    @Override
    public String toString() {
        return " (" + x + " " + y + ") ";
    }
}

答案 10 :(得分:-2)

由于逐位操作对0或1的位起作用,因此每位代表2的幂,所以如果我有位

1010

该值为10.

每个位是2的幂,所以如果我们将位移到右边,我们除以2

1010 - &gt; 0101

0101是5

所以,一般情况下,如果你想要除以2的幂,你需要向右移动你加2的指数,得到那个值

例如,除以16,你将移动4,因为2 ^^ 4 = 16。