我正在尝试对模型中的多个输入执行Conv1D
。因此,我有15个大小均为1x1500的输入,每个输入都是一系列图层的输入。因此,我想在完全连接层之前合并15个卷积模型。我已经在函数中定义了卷积模型,但是我不明白如何调用该函数然后将它们合并。
def defineModel(nkernels, nstrides, dropout, input_shape):
model = Sequential()
model.add(Conv1D(nkernels, nstrides, activation='relu', input_shape=input_shape))
model.add(Conv1D(nkernels*2, nstrides, activation='relu'))
model.add(BatchNormalization())
model.add(MaxPooling1D(nstrides))
model.add(Dropout(dropout))
return model
models = {}
for i in range(15):
models[i] = defineModel(64,2,0.75,(64,1))
我已经成功地串联了以下四个模型:
merged = Concatenate()([ model1.output, model2.output, model3.output, model4.output])
merged = Dense(512, activation='relu')(merged)
merged = Dropout(0.75)(merged)
merged = Dense(1024, activation='relu')(merged)
merged = Dropout(0.75)(merged)
merged = Dense(40, activation='softmax')(merged)
model = Model(inputs=[model1.input, model2.input, model3.input, model4.input], outputs=merged)
在for循环中如何对15层进行处理,因为分别编写15层效率不高?
答案 0 :(得分:2)
当然,正如@GabrielM所建议的那样,使用函数式API是执行此操作的最佳方法,但是,如果您不想修改define_model
函数,也可以这样做:
models = []
inputs = []
outputs = []
for i in range(15):
model = defineModel(64,2,0.75,(64,1))
models.append(model)
inputs.append(model.input)
outputs.append(model.output)
merged = Concatenate()(outputs) # this should be output tensors and not models
# the rest is the same ...
model = Model(inputs=inputs, outputs=merged)
答案 1 :(得分:1)
我认为您能做的最好的就是在各处使用功能性API:
def defineModel(nkernels, nstrides, dropout, input_shape):
l_input = Input( shape=input_shape )
model = Conv1D(nkernels, nstrides, activation='relu')(l_input)
model = Conv1D(nkernels*2, nstrides, activation='relu')(model)
model = BatchNormalization()(model)
model = MaxPooling1D(nstrides)(model)
model = Dropout(dropout)(model)
return model, l_input
models = []
inputs = []
for i in range(15):
model, input = defineModel(64,2,0.75,(64,1))
models.append( model )
inputs.append( input )
然后很容易恢复子模型的输入和输出列表并将它们合并
merged = Concatenate()(models)
merged = Dense(512, activation='relu')(merged)
merged = Dropout(0.75)(merged)
merged = Dense(1024, activation='relu')(merged)
merged = Dropout(0.75)(merged)
merged = Dense(40, activation='softmax')(merged)
model = Model(inputs=inputs, outputs=merged)
通常,这些操作不是瓶颈。在培训或推理过程中,所有这些都不会对
产生重大影响