采购bashrc执行函数

时间:2018-10-17 00:18:16

标签: bash rc

我正在尝试为我的~/.bashrc文件定义一个便捷函数,然后为该文件提供源代码。但是,当我source ~/.bashrc执行它定义的功能时。我究竟做错了什么?功能如下:

# tensorflow object detection train call
train_net()
{
        python /root/training/model_main.py \
        --pipeline_config_path=/root/training/ssd_resnet50_v1_fpn_shared_box_predictor_640x640_coco14_sync.config \
        --model_dir=/root/training/models \
        --num_train_steps=100000 \
        --sample_1_of_n_eval_examples=1 \
        --logtostderr=true
}

嗯。好的,谢谢,将在进程完成运行后立即修复此帖子,以使其与最小/完整示例保持一致。顺便说一句,我整个~/.bashrc

# ~/.bashrc: executed by bash(1) for non-login shells.
# see /usr/share/doc/bash/examples/startup-files (in the package bash-doc)
# for examples

# If not running interactively, don't do anything
[ -z "$PS1" ] && return

# don't put duplicate lines in the history. See bash(1) for more options
# ... or force ignoredups and ignorespace
HISTCONTROL=ignoredups:ignorespace

# append to the history file, don't overwrite it
shopt -s histappend

# for setting history length see HISTSIZE and HISTFILESIZE in bash(1)
HISTSIZE=1000
HISTFILESIZE=2000

# check the window size after each command and, if necessary,
# update the values of LINES and COLUMNS.
shopt -s checkwinsize

# make less more friendly for non-text input files, see lesspipe(1)
[ -x /usr/bin/lesspipe ] && eval "$(SHELL=/bin/sh lesspipe)"

# set variable identifying the chroot you work in (used in the prompt below)
if [ -z "$debian_chroot" ] && [ -r /etc/debian_chroot ]; then
    debian_chroot=$(cat /etc/debian_chroot)
fi

# set a fancy prompt (non-color, unless we know we "want" color)
case "$TERM" in
    xterm-color) color_prompt=yes;;
esac

# uncomment for a colored prompt, if the terminal has the capability; turned
# off by default to not distract the user: the focus in a terminal window
# should be on the output of commands, not on the prompt
#force_color_prompt=yes

if [ -n "$force_color_prompt" ]; then
    if [ -x /usr/bin/tput ] && tput setaf 1 >&/dev/null; then
        # We have color support; assume it's compliant with Ecma-48
        # (ISO/IEC-6429). (Lack of such support is extremely rare, and such
        # a case would tend to support setf rather than setaf.)
        color_prompt=yes
    else
        color_prompt=
    fi
fi

if [ "$color_prompt" = yes ]; then
    PS1='${debian_chroot:+($debian_chroot)}\[\033[01;32m\]\u@\h\[\033[00m\]:\[\033[01;34m\]\w\[\033[00m\]\$ '
else
    PS1='${debian_chroot:+($debian_chroot)}\u@\h:\w\$ '
fi
unset color_prompt force_color_prompt

# If this is an xterm set the title to user@host:dir
case "$TERM" in
xterm*|rxvt*)
    PS1="\[\e]0;${debian_chroot:+($debian_chroot)}\u@\h: \w\a\]$PS1"
    ;;
*)
    ;;
esac

# enable color support of ls and also add handy aliases
if [ -x /usr/bin/dircolors ]; then
    test -r ~/.dircolors && eval "$(dircolors -b ~/.dircolors)" || eval "$(dircolors -b)"
    alias ls='ls --color=auto'
    #alias dir='dir --color=auto'
    #alias vdir='vdir --color=auto'

    alias grep='grep --color=auto'
    alias fgrep='fgrep --color=auto'
    alias egrep='egrep --color=auto'
fi

# some more ls aliases
alias ll='ls -alF'
alias la='ls -A'
alias l='ls -CF'

# Alias definitions.
# You may want to put all your additions into a separate file like
# ~/.bash_aliases, instead of adding them here directly.
# See /usr/share/doc/bash-doc/examples in the bash-doc package.

if [ -f ~/.bash_aliases ]; then
    . ~/.bash_aliases
fi

# enable programmable completion features (you don't need to enable
# this, if it's already enabled in /etc/bash.bashrc and /etc/profile
# sources /etc/bash.bashrc).
#if [ -f /etc/bash_completion ] && ! shopt -oq posix; then
#    . /etc/bash_completion
#fi
. /opt/conda/etc/profile.d/conda.sh
conda activate base
export PYTHONPATH=/tensorflow/models/research:/tensorflow/models/research/slim

export NO_AT_BRIDGE=1

jp()
{
        jupyter notebook --ip 0.0.0.0 --no-browser --allow-root --port=8888
}

jl()
{
    jupyter lab --ip 0.0.0.0 --no-browser --allow-root --port=8888
}

# Run from the tensorflow/models/research/ directory
train_net()
{
    python /root/training/model_main.py \
    --pipeline_config_path=/root/training/ssd_resnet50_v1_fpn_shared_box_predictor_640x640_coco14_sync.config \
    --model_dir=/root/training/models \
    --num_train_steps=100000 \
    --sample_1_of_n_eval_examples=1 \
    --logtostderr=true
}

# Run from the tensorflow/models/research/ directory
eval_net()
{
    python /root/training/model_main.py \
    --pipeline_config_path=/root/training/ssd_resnet50_v1_fpn_shared_box_predictor_640x640_coco14_sync.config \
    --model_dir=/root/training/models \
    --checkpoint_dir=/root/training/models/train \
    --sample_1_of_n_eval_examples=1 \
    --eval_training_data=False \
    --sample_1_of_n_eval_on_train_examples=5 \
    --logtostderr=true
}

# Run TensorBoard
tb(){
    tensorboard --logdir=/root/training/models
}

0 个答案:

没有答案