在删除熊猫数据框中的重复项后替换特定的列值

时间:2018-10-16 15:15:16

标签: python pandas

我是pandas的初学者(如果我使用的术语错误,我深表歉意),我目前正在从事基因组计划。使用drop_duplicates()后,无法处理数据框列。我想更改删除重复项后保留的ID的“突变”列中的列值,以表明此ID具有多个突变。

我的代码:

df = pd.DataFrame([
('MYC', 'nonsense', 's1'),
('MYC', 'missense', 's1'),
('MYCL', 'nonsense', 's1'),
('MYCL', 'missense', 's2'),
('MYCN', 'missense', 's3'),
('MYCN', 'UTR', 's1'),
('MYCN', 'nonsense', 's1')
], columns=['id', 'mutation', 'sample'])

print(df)

结果:

     id  mutation sample
0   MYC  nonsense     s1
1   MYC  nonsense     s1
2   MYC  missense     s1
3  MYCL  nonsense     s1
4  MYCL  missense     s2
5  MYCN  missense     s3
6  MYCN       UTR     s1
7  MYCN  nonsense     s1

我尝试使用drop_duplicates(),但我接近想要的东西。但是,如何将“突变”列中的值更改为“多”?

 print(df.drop_duplicates(subset=('sample','id')))
     id  mutation sample
0   MYC  nonsense     s1
3  MYCL  nonsense     s1
4  MYCL  missense     s2
5  MYCN  missense     s3
6  MYCN       UTR     s1

我想要什么:

     id  mutation sample
0   MYC  multi        s1
3  MYCL  nonsense     s1
4  MYCL  missense     s2
5  MYCN  missense     s3
6  MYCN  multi        s1

2 个答案:

答案 0 :(得分:1)

df.loc[df.duplicated(subset=['id', 'sample'], keep='last'), 'mutation'] = 'multi'
df.drop_duplicates(subset=['id', 'sample'])

说明:首先确定哪些是重复项,然后更改这些重复项的突变列。仅在此之后,删除重复项。

答案 1 :(得分:1)

duplicated

mask = df.duplicated(['id', 'sample'], keep=False)
df.assign(mutation=df.mutation.mask(mask, 'multi')).drop_duplicates()

     id  mutation sample
0   MYC     multi     s1
2  MYCL   nonsens     s1
3  MYCL  missense     s2
4  MYCN  missense     s3
5  MYCN     multi     s1

groupby

df.groupby(['id', 'sample'], sort=False).mutation.pipe(
    lambda g: g.first().mask(g.size() > 1, 'multi')
).reset_index().reindex(df.columns, axis=1)

     id  mutation sample
0   MYC     multi     s1
1  MYCL   nonsens     s1
2  MYCL  missense     s2
3  MYCN  missense     s3
4  MYCN     multi     s1