我正在尝试将SQL查询重新写入PySpark。下面是SQL查询:
SELECT
cs.Environment,
cs.AccountCode,
MIN(cs.StartDate) AS StartDate,
MIN(cs.FinalDate) AS FinalDate,
(
SELECT TOP 1 ItemCode
FROM [dbo].[Contracts]
WHERE
Environment = cs.Environment
AND AccountCode = cs.AccountCode
AND ContractType = 'C'
AND LinePackage = 1
AND InflowOutflow = 'Inflow'
AND EventDate <= GETDATE()
ORDER BY EventDate
) AS Package
FROM [dbo].[Contracts] cs
WHERE
cs.ContractType = 'C'
AND cs.LinePackage = 1
GROUP BY
cs.Environment,
cs.AccountCode
我的PySpark代码是这个:
df = spark.sql(
"""select cs.environment, cs.accountcode,
min(cs.startdatets) as startdate, min(cs.finaldatets) as finaldate,
(select a.itemcode
from firstcomm as a
where a.environment = cs.environment and a.accountcode = cs.accountcode and a.contracttype = 'c' and a.eventdate <= current_date()
order by a.eventdate limit 1) as package
from firstcomm cs where cs.contracttype = 'c' and cs.linepackage = 1
group by cs.environment, cs.accountcode""")
但我不断收到此错误:
AnalysisException: Accessing outer query column is not allowed in:
LocalLimit 1
+- Project [itemcode#3641]
+- Sort [eventdate#3629 ASC NULLS FIRST], true
+- Project [itemcode#3641, eventdate#3629]
+- Filter ((((environment#3628 = outer(environment#3628)) && (accountcode#3622 = outer(accountcode#3622))) && (contracttype#3626 = c)) && (((linepackage#3644 = 1) && (inflowoutflow#3637 = inflow)) && (eventdate#3629 <= current_date(Some(Zulu)))))
+- SubqueryAlias a
顺便说一句,我使用的是Spark 2.2.1,我相信它支持子查询
任何想法如何解决此问题?还是应该重新编写查询以获得所需的结果?
答案 0 :(得分:3)
使用pyspark数据框api感到舒适吗?
import pyspark.sql.functions as F
from pyspark.sql.window import Window
# get the top item code for each environment/account code
package_df = contracts.filter((F.col("ContractType") == 'C') & (F.col("LinePackage") == 1) & (F.col("InflowOutflow") == "Inflow") & (F.col("EventDate") <= GETDATE())).orderBy("EventDate")
package_df = package_df.withColumn("row_number", F.row_number().over(Window.partitionBy("Environment", "AccountCode").orderBy(F.col("ItemCode").desc())
package_df = package_df.filter(F.col("row_number") == 1).drop("row_number")
# aggregate over your contracts table and join the top item code
contracts_df = contracts.filter((F.col("ContractType") == 'C') & (F.col("AccountCode") == 1))
contracts_df = contracts_df.groupBy("Environment", "AccountCode").agg(F.min("StartDate").alias("StartDate"), F.min("FinalDate").alias("FinalDate"))
# join to get the top item code
output_df = contracts_df.join(package_df, ["Environment", "AccountCode"])
我使用了窗口函数来获取每个键的顶级代码,然后将其加入到汇总的原始数据框中。