张量流对象计数

时间:2018-10-16 08:26:44

标签: python c python-3.x tensorflow

# In[10]:


def run_inference_for_single_image(image, graph):
  with graph.as_default():
  with tf.Session() as sess:
  # Get handles to input and output tensors
  ops = tf.get_default_graph().get_operations()
  all_tensor_names = {output.name for op in ops for output in op.outputs}
  tensor_dict = {}
  for key in [
      'num_detections', 'detection_boxes', 'detection_scores',
      'detection_classes', 'detection_masks'
  ]:
    tensor_name = key + ':0'
    if tensor_name in all_tensor_names:
      tensor_dict[key] = tf.get_default_graph().get_tensor_by_name(
          tensor_name)
  if 'detection_masks' in tensor_dict:
    # The following processing is only for single image
    detection_boxes = tf.squeeze(tensor_dict['detection_boxes'], [0])
    detection_masks = tf.squeeze(tensor_dict['detection_masks'], [0])
    # Reframe is required to translate mask from box coordinates to image coordinates and fit the image size.
    real_num_detection = tf.cast(tensor_dict['num_detections'][0], tf.int32)
    detection_boxes = tf.slice(detection_boxes, [0, 0], [real_num_detection, -1])
    detection_masks = tf.slice(detection_masks, [0, 0, 0], 
    [real_num_detection, -1, -1])
    detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks(
        detection_masks, detection_boxes, image.shape[0], image.shape[1])
    detection_masks_reframed = tf.cast(
        tf.greater(detection_masks_reframed, 0.5), tf.uint8)
    # Follow the convention by adding back the batch dimension
    tensor_dict['detection_masks'] = tf.expand_dims(
        detection_masks_reframed, 0)
  image_tensor = tf.get_default_graph().get_tensor_by_name('image_tensor:0')

  # Run inference
  output_dict = sess.run(tensor_dict,
                         feed_dict={image_tensor: np.expand_dims(image, 0)})

  # all outputs are float32 numpy arrays, so convert types as appropriate
  output_dict['num_detections'] = int(output_dict['num_detections'][0])
  output_dict['detection_classes'] = output_dict['detection_classes'][0].astype(np.uint8)
  output_dict['detection_boxes'] = output_dict['detection_boxes'][0]
  output_dict['detection_scores'] = output_dict['detection_scores'][0]
  if 'detection_masks' in output_dict:
    output_dict['detection_masks'] = output_dict['detection_masks'][0]


 return output_dict



`for image_path in TEST_IMAGE_PATHS:
  image = Image.open(image_path)
 # the array based representation of the image will be used later in order 
 to prepare the
 # result image with boxes and labels on it.
image_np = load_image_into_numpy_array(image)
 # Expand dimensions since the model expects images to have shape: [1, None, None, 3]
 image_np_expanded = np.expand_dims(image_np, axis=0)
 # Actual detection.
 output_dict = run_inference_for_single_image(image_np, detection_graph)
 # Visualization of the results of a detection.
 vis_util.visualize_boxes_and_labels_on_image_array(
  image_np,
  output_dict['detection_boxes'],
  output_dict['detection_classes'],
  output_dict['detection_scores'],
  category_index,
  instance_masks=output_dict.get('detection_masks'),
  use_normalized_coordinates=True,
  line_thickness=8)
plt.figure(figsize=IMAGE_SIZE)
plt.imshow(image_np)
plt.show()

` 我要计算照片中的对象,如下图所示(对象类别和数量(例如:人:8汽车:2),然后将其放在照片的一角。

使用与此链接count object from image sample

中相同的代码

请帮助我解决此问题。

'online-status-changed'

0 个答案:

没有答案