我正在尝试使用答案First question拆分下面的列。目前,我正在使用字母在df中创建新列。我想在名称前使用字母作为新的列名称。在低于G,D,W,C,UTIL的情况下。
由于类别G
与名称First Person
之间只有“空格”,依此类推,我想尽办法分隔类别G
与第一个和最后一个命名并在适当的列下加入它们。
library(stringr)
test <- data.frame(Lineup = c("G First Person D Another Last W Fake Name C Test Another UTIL Another Test", "G Fake Name W Another Fake D Third person UTIL Another Name C Name Another "))
1 G First Person D Another Last W Fake Name C Test Another UTIL Another Test
2 G Fake Name W Another Fake D Third person UTIL Another Name C Name Another
test$G <- str_split_fixed(test$Lineup, " ", 2)
结果:
G
G
希望的结果:
G D W C UTIL
First Person Another Last Fake Name Test Another Another Test
Fake Name Third Person Another Fake Name Another Another Name
答案 0 :(得分:1)
这是使用tidyverse
的一种方法:
# example data
test <- data.frame(Lineup = c("G First Person D Another Last W Fake Name C Test Another UTIL Another Test",
"G Fake Name W Another Fake D Third person UTIL Another Name C Name Another "))
library(tidyverse)
# create a dataset of words and info about
# their initial row id
# whether they should be a column in our new dataset
# group to join on
dt_words = test %>%
mutate(id = row_number()) %>%
separate_rows(Lineup) %>%
mutate(is_col = Lineup %in% c(LETTERS, "UTIL"),
group = cumsum(is_col))
# get the corresponding values of your new dataset
dt_values = dt_words %>%
filter(is_col == FALSE) %>%
group_by(group, id) %>%
summarise(values = paste0(Lineup, collapse = " "))
# get the columns of your new dataset
# join corresponding values
# reshape data
dt_words %>%
filter(is_col == TRUE) %>%
select(-is_col) %>%
inner_join(dt_values, by=c("group","id")) %>%
select(-group) %>%
spread(Lineup, values) %>%
select(-id)
# C D G UTIL W
# 1 Test Another Another Last First Person Another Test Fake Name
# 2 Name Another Third person Fake Name Another Name Another Fake
注意,这里的假设是,您将始终只有一个大写字母来拆分值,这些大写字母将成为新数据集中的列。