XGBModel”对象没有属性“ evals_result_”

时间:2018-10-15 11:25:45

标签: python-3.x machine-learning scikit-learn xgboost

我正在尝试在数据集上使用xgboost。我在各种博客中都看到了相同的语法,但是在调用clf.evals_result()时遇到错误 这是我的代码

from xgboost import XGBRegressor as xgb
from sklearn.metrics import mean_absolute_error as mae

evals_result ={}
eval_s = [(x, y),(xval,yval)]

clf = xgb(n_estimators=100,learning_rate=0.03,tree_method='gpu_hist',lamda=0.1,eval_metric='mae',eval_set=eval_s,early_stopping_rounds=0,evals_result=evals_result)

clf.fit(x,y) 

r = clf.evals_result()

这是我收到的错误

---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
<ipython-input-138-2d6867968043> in <module>
      1 
----> 2 r = clf.evals_result()
      3 
      4 p = clf.predict(xval)

/opt/conda/lib/python3.6/site-packages/xgboost/sklearn.py in evals_result(self)
    399          'validation_1': {'logloss': ['0.41965', '0.17686']}}
    400         """
--> 401         if self.evals_result_:
    402             evals_result = self.evals_result_
    403         else:

AttributeError: 'XGBRegressor' object has no attribute 'evals_result_'

1 个答案:

答案 0 :(得分:3)

我遇到了完全相同的错误,解决方法是将eval_set传递给fit函数,而不是在创建分类器时

clf.fit(x,y,eval_set=eval_s) 

然后您可以运行clf.evals_result()