大熊猫,查找并保留连续的行-创建面板数据

时间:2018-10-14 20:58:46

标签: python pandas-groupby panel-data

我有一个如下所示的DataFrame:

df = {'time': [1999,2001,2002,2003,2007,1999,2000,2001,2003,2004],
      'id':['A','A','A','A','A','B','B','B','B','B'],
      'value':[0.1,0.1,0.1,0.1,0.6,0.2,0.2,0.2,0.2,0.2]}
df = pd.DataFrame(df)

我想在id-time级别上创建一个面板数据集,这意味着,我想要类似的东西:

time id  value
0  2001  A    0.1
1  2002  A    0.1
2  2003  A    0.6
3  1999  B    0.2
4  2000  B    0.2
5  2001  B    0.2

每个id仅保留连续的行,我可以在R中仅用几行来完成此操作,

df<-df %>% 
    mutate(time = as.integer(time)) %>% 
    group_by(gvkey, grp = cumsum(c(1, diff(time) != 1))) %>% 
    filter(n() >= consec_obs)
df<-df[,setdiff(colnames(df),c('grp'))]

其中consec_obs是一个要保留的连续行的最小值。

我搜索了一段时间,但找不到解决方案,这让我有些惊讶,因为这是一种基本的计量经济学分析操作,有人知道如何使用Python进行此操作吗?

2 个答案:

答案 0 :(得分:1)

模仿R解决方案,我在周日晚上提出了一个Python版本,它是:

# lag where two rows within each group are not conesecutive
df['diff'] = df.groupby('id')['time'].diff()!=1
# cumulative summation
df['cusm'] = df.groupby('id')['diff'].cumsum()
# group by 'id' and 'cusm', then select those rows which satisfy prespecified condition
df.loc[df.groupby(['id','cusm']).transform('count')['diff'] >=3].drop(['diff','cusm'],axis=1)

如果这似乎很难理解,请单行尝试代码,到那里就可以了。

是否可以将前两行合并为一个?

答案 1 :(得分:0)

我希望这会对您有所帮助。我将在前进的过程中尝试解释每一行。

导入这两个软件包。

from itertools import groupby
import numpy as np

您的数据框看起来像这样:

>>>df = {'time': [1999,2001,2002,2003,2007,1999,2000,2001,2003,2004],
  'id':['A','A','A','A','A','B','B','B','B','B'],
  'value':[0.1,0.1,0.1,0.1,0.6,0.2,0.2,0.2,0.2,0.2]}

>>>df = pd.DataFrame(df)
>>>df

    id  time    value
0   A   1999    0.1
1   A   2001    0.1
2   A   2002    0.1
3   A   2003    0.1
4   A   2007    0.6
5   B   1999    0.2
6   B   2000    0.2
7   B   2001    0.2
8   B   2003    0.2
9   B   2004    0.2

第一步: 查找唯一ID。这是您的操作方式:

>>>unique = np.unique(df.id.values).tolist()
>>>unique
['A', 'B']

第二步: 为每个ID创建一个列表列表(我将其命名为Group)。外部列表中的每个列表都包含连续的数字。为了清楚起见,我将打印小组的照片。它将一组连续的数字组合在一起。

第三步: 分组后,仅为那些分组长度大于2的值创建一个数据框。(我假设2是因为您没有将B:2003和B:2004视为连续序列。)

这是它的工作方式:

# Create an Empty dataframe. This is where you will keep appending peices of dataframes
df2 = pd.DataFrame()
# Now you would want to iterate over your unique IDs ie. 'A', 'B'.
for i in unique:
#Create an empty list called Group. Here you will append lists that contain consecutive numbers.
    groups = []
    #Create a data frame where ID is equal to current iterating ID
    df1 = df.loc[df['id'] == i]
    #The next 2 for loops (nested) will return group (a list of lists)
    for key, group in groupby(enumerate(df1.time.values), lambda ix : ix[0] - ix[1]):
        list1 = []
        for j in list(group):
            list1.append(j[1])
        groups.append(list1)
    # See how your group for current ID looks
    print(groups)
    # Iterate within the created group. See if group length is > 2. If yes, append to df2 (the empty data frame that you created earlier)
    for j in groups:
        if len(j) > 1:
            # you are concatenating 2 frames in the below code.
            df2 = pd.concat([df2,df.loc[(df['time'].isin(j)) & (df['id'] == i)]])

Voila

>>>> df2
    id  time    value
1   A   2001    0.1
2   A   2002    0.1
3   A   2003    0.1
5   B   1999    0.2
6   B   2000    0.2
7   B   2001    0.2